THE DUAL ORIGIN OF CULTIVATION IN COCONUT AND ITS IMPLICATIONS FOR BREEDING

Luc Baudouin Bee F Gunn

Introducing the tree of life

Food

Immature nuts (meat and water)
Mature nuts (grated meat, milk, copra oil, virgin oil)
Terminal bud (Millionaire's salad)
Sap (Palm wine, spirit, Sugar, vinegar)
Others...

Non food

Oil (Soap, cosmetics, biodiesel, dynamite)
Palms (roofs etc.)
Wood (Construction, furniture)
Shell (Coal,
Husk (Doormats, Carpets, ropes, geotextile)
Roots (medicinal)
Etc.

West African Tall

Rennell Island Tall

Malayan Yellow Dwarf

Plurydisciplinary approach

- Molecular markers
 - RFLP, AFLP, DArT, Microsatellites
 - Molecular taxonomy
- Plant morphology
 - Especially fruit morphology
- Palaeobotany
 - fossils
- Linguistics
 - Names for "coconut" or various coconut parts
- History
 - Austronesian, arab and european navigations

Microsatellite diversity studies

- □ 1322 individuals
- 140 origins
- 32 producing countries
- 10 SSR markers
- Statistical analyses
 - Structure
 - AMOVA
 - Geneclass 2

Gunn BF, Baudouin L, Olsen KM (2011) Independent Origins of Cultivated Coconut (*Cocos nucifera* L.) in the Old World Tropics. PLoS ONE 6(6): e21143. doi:10.1371/journal.pone.0021143

Distribution of genetic diversity in coconut

Genetic distances (RFLP Nei 1978)

COCONUT 21 RFLP

Pacific 228 indiv. S.E.A. Melanesia, Polynesia, PanamaIndo-Atlantic. 40 indiv.

OIL PALM 37 RFLP

•E. o. 245 indiv. Peru, Brazil, French Guyana, Central America, Suriname
•E. g. 38 indiv. Africa

Cocos nucifera	Min	Max	Elaeis spp	Min	Max
Between Indo-Atlantic and Pacific	0.493	0.695	Between E. guinenensis and E. oleifera	0.276	0.321
Within Pacific	0.023	0.309	Within E. oleifera	0.114	0.425
Contraction of the					
Based on RFLP, SSR, AFLP suggest 2 (sub-)species No fertility barrier!			Based on RFLP and AFLP <i>E. g.</i> is within the range of variation of <i>E. o.</i> But F_1 parly sterile!		

Synthetic representation of diversity of fruit morphology

S.E. Asia
South Pacific
Indo-Atlantic
Introgressed I. A.

Ref: Harries 1978

Lethal yellowing field testing

(Case of Jamaica, after Been 1981)

25%<LY<35%
 35%<LY<45%
 45%<LY<60%
 60%<LY<80%
 80%<LY<100%
 Legend

South-east Asian and related populations tend to behave better and more consistantly than populations from the rest of the world Indo-Atlantic populations are susceptible

Challenges for coconut breeding

Large seeded tree crop Requires large surfaces Long generation time Low prolificacy Limits genetic progress Smallholder crop Multipurpose crop Generally poor acceptance of high producing hybrids

Mapping "large spectrum" QTLs for coconuts Principle

Tanzania

Lethal disease in Tanzania

- All populations studied:
 - 33% South-east Asian alleles,
 - 67% Indian alleles

•North: Arabo-persian influence (mid 19th century)

- Disease appeared earlier
- Partial resistance detected
- South German influence (Late 19th – early 20th century)
 - Disease appeared later
 - No known resistance

•Approach:

- High throughput genotyping
- Identify geographic variations
- Locate loci under selection
- Search for putative R-genes

Detecting genes under selection in farmer's fields

Simulated data. s=1.25. 32 generations. Initial frequency: 0.33

WAYS OF PARTICIPATING

Stakeholders	 Not directly involved but Likely to benefit from the project Willing to support the project From support letters to financing 		
Actors in coconut breeding	 Mainly coconut breeding organizations Willing to plant trials with their own planting material Possibly interested in training in genomic breeding 		
Partners of the sequencing projects	 Organizations involved in genomics research Identified for their potential contribution to coconut sequencing project 		

In conclusion

- Molecular studies reveal a major subdivision between Indo-Atlantic and Pacific populations
- Breeding programs should take advantage of this genetic structure
- Sequencing coconut genome will help
- Large SNP marker sets are needed
 - Between sub-species polymorphism should be goven priority
- Anticipate different varietal output
 - Dwarf x Tall population hybrids
 - Composite varieties
 - Improved traditional varieties Tall and Dwarfs

Thank you

Thanks to

- Patricia Lebrun and Angélique Berger CIRAD
- Bee Gunn ANU
- Ken Olsen WUSTL
- Cogent network
- And workshop organizers