Cucumber (*Cucumis sativus* L.) genome sequencing & comparative analysis

Wóycicki R et al. 2011, The genome sequence of a northern European cucumber (*Cucumis sativus* L.) cultivar unravels evolutionary adaptation mechanisms in plants. PLoS ONE 6(7): e22728. doi:10.1371/journal.pone.0022728

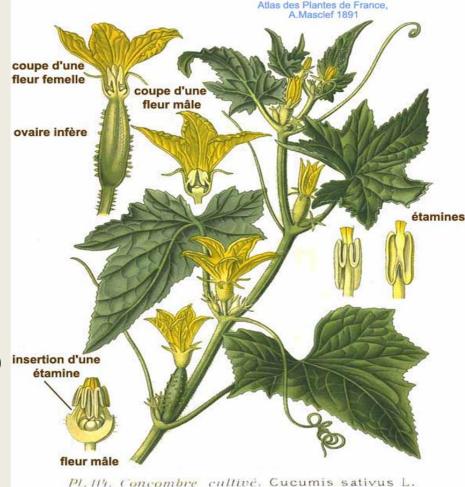
Dept. of Genetics, Breeding & Biotechnology, Faculty of Horticulture & Landscape Architecture, Warsaw University of Life Sciences – SGGW, Warsaw, Poland

Presentation scheme

- I. Introduction
- II. Material and methods
- III. Results
 - 1. Sequencing

2. Genome reconstruction

- a. Reads assembly into contigs & scaffolds
- b. Mapping of genome sequences onto chromosomes


3. Genome analysis

- a. Analysis of SSRs & other repeated sequences
- b. Genome structural & functional annotation
- c. Comparative analysis of genomes of two lines (B10 & 9930)
 - sequence level simillarity
 - differences in number of functional groups of genes
 - chromosomal rearrangements
- d. Comparative analysis of gene promoters containing ABREs, DREs and EREs (CREs) between species (*A. thaliana, P. trichocarpa, O. sativa and C. sativus* lines B10 and 9930)
 - distribution & relative content of CREs
 - functional classification & analysis of genes containing CREs in their promoters.

V. Summary & Conclusions

Basic informations about cucumber

- Family: Cucurbitaceae
 Genus: Cucurbita i Cucumis
 Species: Cucumis melo,
 Cucumis sativus
- Economically importance
- Origin from Himalayas' bottom
- Annual, outcrossing & monocieous
- 7 chromosomes pairs, diploid (2n)
- 367 000 000 bp (haploid genome)
- Model plant for basic and applied research

- 1. Plant material young leaves of cucumber line B10
- 2. Genomic DNA isolation GenElute Plant Genomic DNA Miniprep Kit (Sigma Aldrich, Buchs, Switzerland)
- **3. 65,260 BAC clones from two libraries** (HindIII (Gutman et al. 2008) & BamHI/MboI (Amplicon Express, Pullman, WA, USA))
- 4. Sanger sequencing of 89'088 BESs (Agencourt Bioscience Corporation, Beverly, MA ,USA (2008) now Beckman Coulter Genomics)
- 5. Bioinformatics analysis of BESs quality– Lucy, BLAST; SSRs- Phobos; other repeats- RepeatModeler, Repbase Update, BLAST, TIGR Plant Repeat Database
- 6. 454 Titanium pyrosequencing 12x genome coverage in single (8x) and PE (4x, 3000 pb) Agencourt Bioscience Corporation reads quality– sffinfo, sff_extract

7. Genome assembly using 454 and BES reads

- A version Celera
- B version Celera oraz Arachne

8. Quality check of assembled genome sequences

Simillarity of assembled genome sequences – MUMmer, RepeatMasker No. & homology of BESs, 63,035 EST unigenes, BAC & Fosmid clones' sequences to asambled contigs- BLAT, MUMmer, RepeatMasker, coverage of assembled contigs in reads after 454 Titanium

9. Mapping of B10 & 9930 genomes onto chromosomes 1,883 molecular markers – BLAST, Arachne, MUMmer

10. Structural annotation of genomes of B10 & 9930 lines

Gene prediction using the model made with GeneMark.hmm ES (Mark Borodovsky)

Gene model & prediction veryfication using sequenices of 63,035 EST unigenes & 422 cDNAs – BLAT

- 11. Functional annotation of genomes of B10 & 9930 lines Predicted peptides vs. GenBank db – BraGOMap (Wóycicki et al., 2008) Gene Ontology classification –iProClass db, GORetriver
- 12. Comparative analysis of genome sequences of B10 and 9930 lines Analysis of sequences simillarity together with SNPs/INDELs discovery -MUMmer

Comparison of sequences mapping onto chromosomes - Mauve, MUMmer

13. Comparative analysis of gene promotores between species (A. thaliana, P. trichocarpa, O. sativa and C. sativus lines B10 and 9930)

Identification of genes containing ABRE, DRE and ERE elements in their promoters (1,000 bp upstream the start codon (ATG)) – Patmatch

Comparison of protein sequences – BLAST, OrthoMCL

Functional classification of genes containing ABRE, DRE and ERE elements in their promoters – GOSlim

Identification of putative transcription factors from C. sativus line B10 and 9930 – PFAM, ClustalW, MEGA 4 (Neighbour-Joining method)

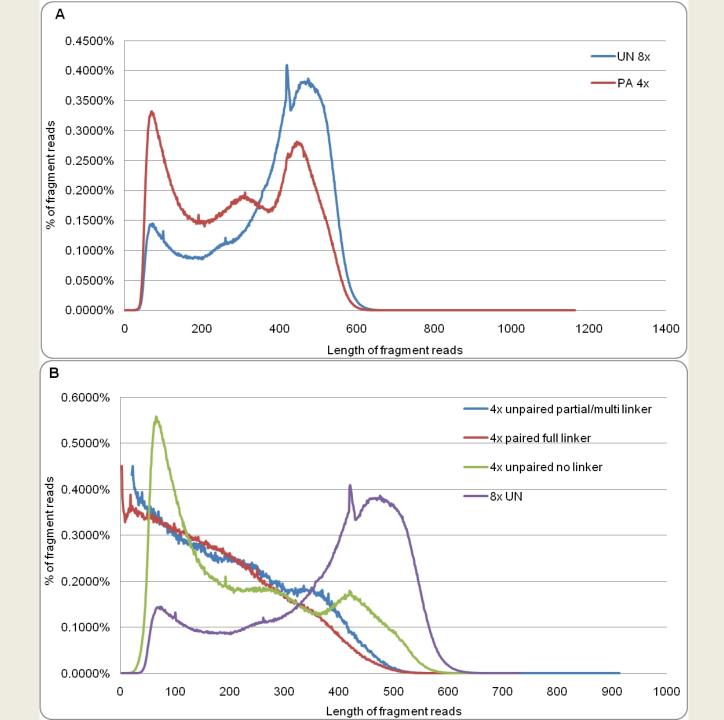
ABA treatment and electrolyte leakage - seedlings were subjected to 200µM Abscisic acid (ABA) (Sigma Aldrich, St. Louis, MO, USA) for 3 days. The last ABA treatment was made 3 hours before freezing treatment. Electrolyte leakage experiments were performed as previously described (Jaglo-Ottosen KR et al. 1998) with modifications. At least five replicates for each data point.

13. Computer power

3 computing stations – 28 SSP, 88 GB RAM (Applied Omics (Warsaw, Poland) & Warsaw University of Life Sciences - SGGW)

14. Home-made Perl scripts (rafal_woycicki.users.sggw.pl/rw_scripts.html)

Results


Sequencing

BESs sequencing

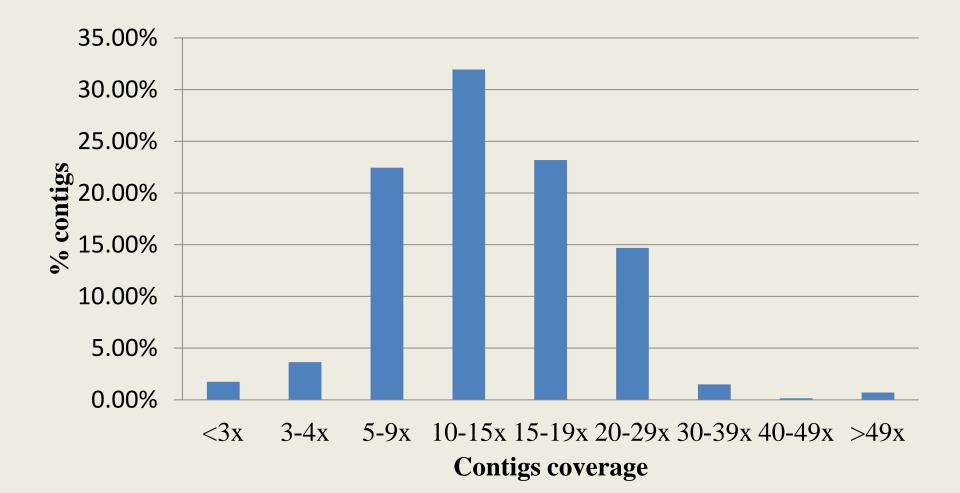
Feature	Sum	%
Totall no. of reads	84,493	94.84
Not-accepted reads	19,883	23.53
Goog quality BESs	64,610	76.47
Chloroplastom homology sequences	2,094	3.24
Mitochondrion homology sequences	297	0.46
Nuclear genome derived sequences	62,220	71.98
Mean lenght of nuclear BESs [nt]	Mean lenght of nuclear BESs [nt] 737	
Sum lenght of nuclear BESs [nt]	45,563,499	
Genome in BESs [%]	12.42	

454 Titanium pyrosequencing

	4× paired full linker	4× unpaired no linker	8× unpaired	Summary
Total no. reads	3,204,606	3,999,255	7,970,914	15,174,775
< 100 nt	33.67%	26.86%	6.49%	
100-300 nt	49.55%	46.07%	20.14%	NID
301-500 nt	16.66%	25.47%	55.05%	ND
> 500 nt	0.12%	1.61%	18.32%	
Mean lenght	171.53	220.01	374.00	290.66
Lenght sum	549,690,047	879,890,390	2,981,159,897	4,410,740,334
Coverage	1.50	2.40	8.12	12.02

Genome reconstruction

Genome reads assembly


Cucumber genomes assembly results

Feature	B10 A version 12x 454, BESs	B10 B version 12x 454, BESs	9930 (Huang et al. 2009) 72x Illumina/San ger	GY14 (Miller et al. 2009, Cavagnaro et al 2010) 36x 454
Contigs' length sum [Mbp]	197	193	185	200
% of genome size	53.79	52.64	50.61	54.50
No. contigs	15,667	16,454	12,195	7,901
Mean contigs length [bp]	12,972	11,712	15,230	BD
N50 contigs length [bp]	27,086	23,200	30,248	37,600
Scafolds length sum [bp]	224	321	203	203
% of genome size	61.24	87.82	55.39	55.33
No. scafolds	4,173	13,116	1,792	3,610
Mean scafolds lenght [bp]	54,070	24,500	113,435	48,129
N50 scafolds lenght [bp]	2,324,038	315,056	1,509,230	993,000

Genome assembly quality check

- More than 98% simillarity between both versions of genome assembly, about 10 Mbp differing those two versions
- 97% of 63,035 cucumber EST unigenes & other genome sequences (BACs, Fosmids) mapped with 98% simillarity
- 51,936 of BESs (83,48%) uniqly mapped to the contigs
- Almost 95% of assembled total contigs lenght are longer then mean gene length

Mean assembled genome coverega > 14x, 98% contigs with > 3x coverage

Mapping of assembled genome onto chromosomes

Genome onto chromosomes

	A versio	n - Celera	B Version – Celera/Arachne		
Chromosome no.	Contigs sum length [Mbp]	Scafolds sum length [Mbp]	Contigs sum length [Mbp]	Scafolds sum length [Mbp]	
1 (4)	20.87	28.60	20.30	34.91	
2 (2)	20.81	25.16	20.24	34.86	
3 (3)	34.89	39.09	33.96	60.83	
4 (6)	26.81	33.16	26.13	47.75	
5 (1)	23.18	29.98	22.59	45.04	
6 (5)	24.05	30.31	23.50	45.98	
7 (7)	16.47	20.44	15.97	31.14	
Total	167.11	206.73	162.73	300.53	
% assembled genome	85.83	92.29	84.23	93.04	

Genome analysis

SSRs & other repeats analysis

SSRs characteristics

Nucleotides reports motifs	Contigs[%]	BESs [%]
Nucleotides repeats motifs —	0.95	0.73
Mono-	9.83	25.91
A	96.77	97.07
С	3.23	2.93
Di-	24.97	20.15
AT	72.12	69.63
AG	20.05	20.79
Tri	22.15	18.62
AAT	47.17	42.23
AAG	31.68	32.51
Tetra-	23.36	19.28
AAAT	37.04	35.65
AAAG	19.25	20.46
Penta-	9.63	7.7.
AAAAG	26.44	30.12
AAAAT	22.36	17.71
Hexa-	6.55	5.36
AAAAAG	18.44	16.38
AAAAAT	8.74	6.51

Plant repeated elements analysis

Suman Class	Clear	Sub Class	Contigs[%]	BESs [%]
Super-Class	Class	Sub-Class	17.82	48.13
		Ty1-copia	1.78	3.25
		Ty3-gypsy	0.53	0.59
	Retrotransposons	LINE	0.46	1.02
		SINE	0.00	0.00
Transposable		Unclassified	2.80	3.79
Elements		Ac/Ds	0.01	0.01
	Transport	CACTA, En/Spm	0.20	0.19
	Transposons	Mutator (MULE)	0.03	0.03
		Unclassified	0.55	0.82
	M	ITEs	0.00	0.00
Ce	entromere related seq	uences	0.06	0.11
Г	Celomere related sequ	ences	0.00	0.02
PDNA gamag	45S rDNA		0.18	8.67
rRNA genes	5S rDNA		0.02	0.29
Unc	Unclassified repeated sequences		1.00	0.90
Cucum	Cucumber specific repeated sequences		10.09	23.81
	Small RNAs			4.63

Genome annotation

Structural annotation

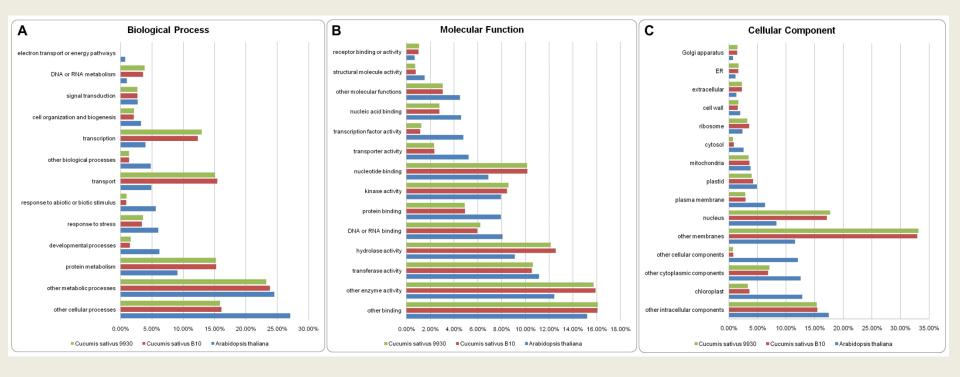
Gene prediction results

Feature	Line B10	Line 9930	Line 9930 (Huang et al. 2009)
No. of protein coding genes	26,587	24,678	26,682
Mean length of exons [bp]	201	207	238
Mean no. of exons per gene	5.49	5.79	4.39
Mean intron length [bp]	436	441	483
Mean lenght of integenic region [bp]	3,009	2,864	ND
Mean lenght of coding sequence [bp]	1,103	1,198	1,046
Mean lenght of transcribed region [bp]	3,058	3,309	2,685
Mean gene lenght [bp]	4,563	4,741	ND

Functional annotation

Functional annotation results

Festure	Line B	510	Line 9930	
Feature	No.	%	No.	%
No. proteins >= 100 aa	23,190	87.22	21,177	85.81
Similarities in GenBank	19,562	84.36	ND	ND
Annotated genes in GenBank	16,944	73.07	16,443	77.65
Gene products with GO	12,643	54.52	12,363	58.38
GO Biological Process (BP)	9,015	71.30	8,813	71.29
GO Molecular Function (MF)	11,391	90.10	11,116	89.91
GO Cellular Compartment (CC)	5,355	42.36	5,239	42.38


Comparative analysis of genomes of B10 and 9930 lines

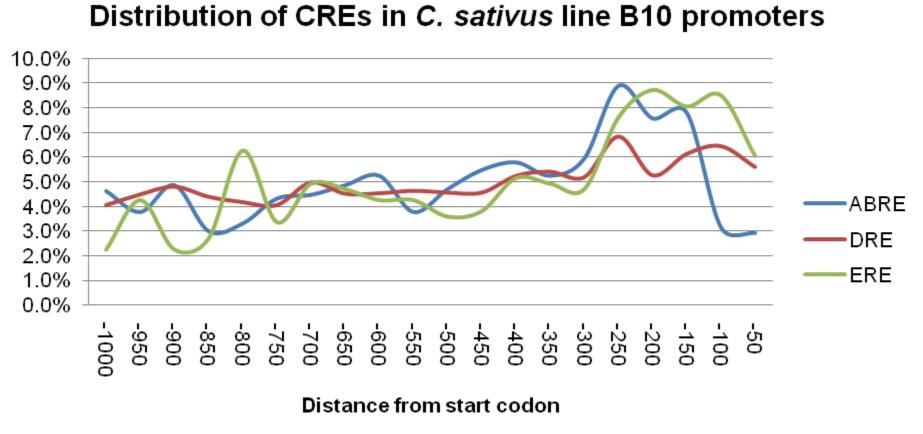
Genomes sequence similarity, SNPs & INDELs

97,40% similarity of assembled parts of genomes of lines B10 and 9930

Feature	No. SNP	SNP frequency for 1 Kbp	No. INDEL	INDEL frequency for 1 Kbp
Whole assembled genome	811,274	4.22	485,048	2.53
Transcribed region	196,845	2.48	108,359	1.37
Exons	45,449	1.60	16,584	0.58
Gene promotor regions (-1000 from ATG)	79,716	3.85	49,856	2.40

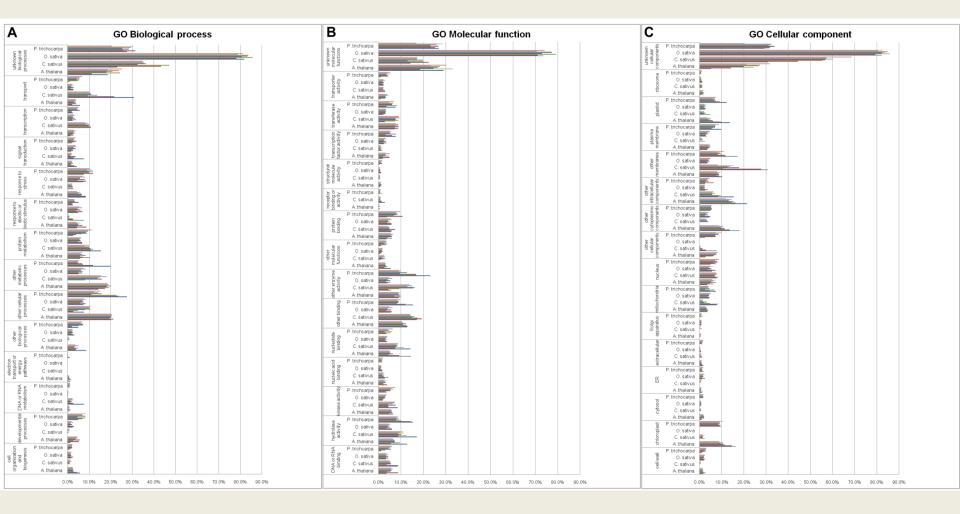
Differences in functional group of genes

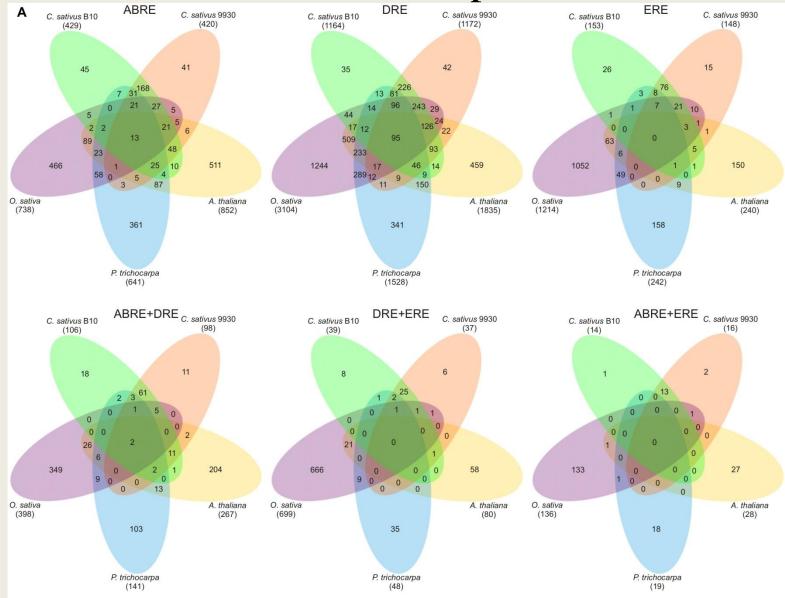
Comparison of functional annotation results


Process	Line B10	Line 9930	Envinormental conditions
Photosynthesis	+	_	
Sugar metabolism	+	-	
Respiration	+	-	Temper climate of Northern Europe: cold, low light intensity
Reg.of gene expreession	+	-	Europe: cold, low light intensity
Chlorophyll degradation	+	-	
Nitrogen binding as amonium ions	+	_	Continouos and higher emision of CO2 in Europe than in South- Eastern Asia, when counting from beginning of industrial era to 80's of XX century - lowered abillity for binding nitrogen ions
Oxidative stress resistance	-	+	Subtropical climate of South-
High temperature resistance	_	+	Eastern China: high sesonal intensity of sun light including UV-B radiation, together with high temperature

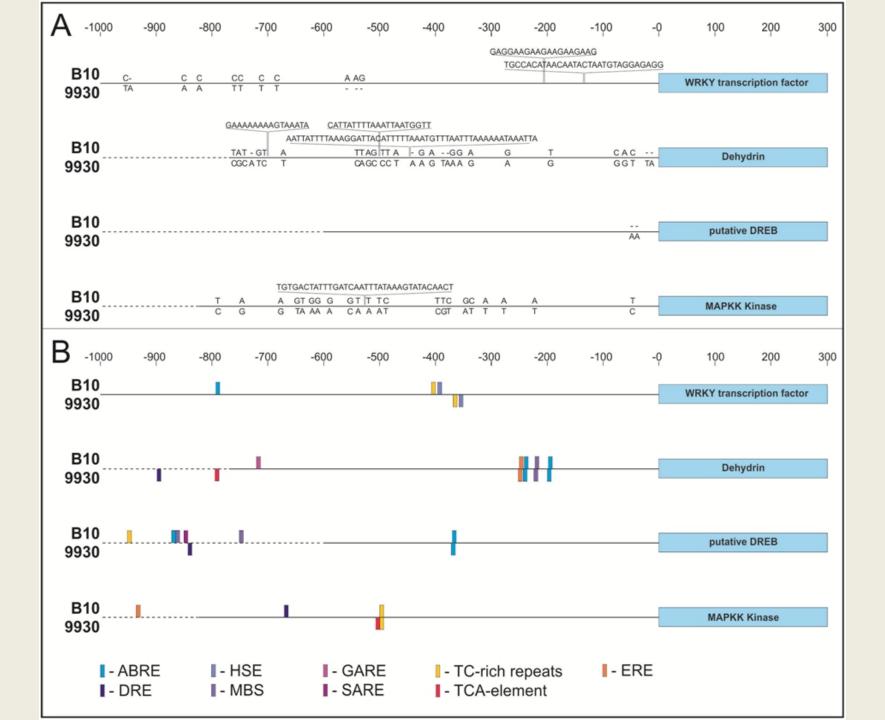
Chromosomal rearrangements

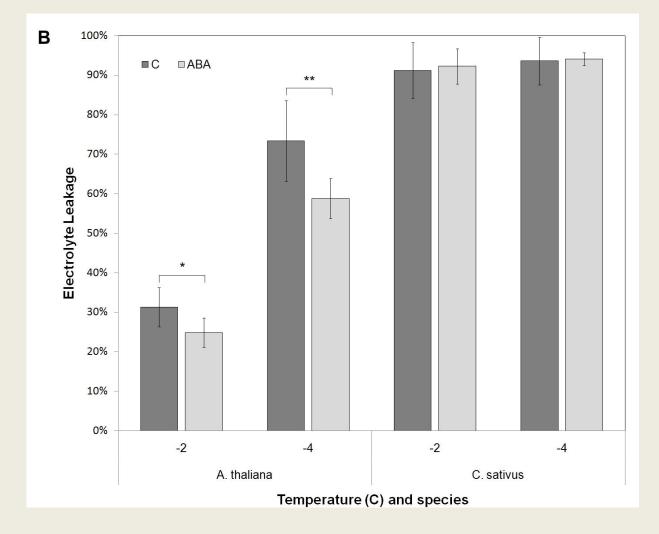
Chromosomal rearrangements visualization


Comparative analysis of gene promoters containing **ABREs**, **DREs** and **EREs** between 4 species: A. thaliana, P. trichocarpa, O. sativa and C. sativus lines B10 and 9930


Relative content of ABREs, DREs and EREs in promoters of genes of 4 species

	ABRE			DRE			ERE		
Species	%	p-	Av.	%	p-	Av.	%	p-	Av.
		value			value			value	
A. thaliana	24.8	2.86	1.1763	67.7	1.33	1.2098	7.4	7.42	1.037
		e-05			e-04			e-06	
C. sativus line	22.1	2.47	1.1174	70.3	1.08	1.1766	7.7	5.42	1.0251
B10		e-05			e-04			e-06	
C. sativus line	22.4	2.47	1.1385	69.4	1.09	1.1885	8.2	5.46	1.0509
9930		e-05			e-04			e-06	
O. sativa	8.0	5.30	1.1121	73.7	3.45	1.6561	18.3	3.48	1.2503
		e-05			e-04			e-05	
P. trichocarpa	19.1	2.80	1.1234	70.8	1.27	1.3172	10.1	7.01	1.1154
		e-05			e-04			e-06	


Functional classification of 4 species genes containing ABREs, DREs and EREs in their promoters.


Functional analysis of genes containing ABREs, DREs and EREs in their promoters

Changes observed in promoter of selected orthologous genes of two *C. sativus* lines

Freezing tolerance tests of non-acclimated A. *thaliana* and C. *sativus* seedlings after ABA treatment

Summary

- ✓ 62'220 Sanger sequenced nuclear cucumber BESs 12,49% genome size
- ✓ 454 Titanium *de-novo* sequencing of cucumber genome (*Cucumis sativus* L.) line B10 with 12x read coverage
- ✓ 52% of genome assembled into contigs, 48% of the cucumber genome consists of plant repeats (basing on BESs)
- ✓ 26,587 of gene structures were predicted *de-novo*
- \checkmark 12,643 proteins (47,55%) with Gene Ontology
- ✓ 85% of assembled contigs & 93% of scaffolds were mapped onto chromosomes

Summary

- ✓ Differences in Gene Copy Numbers, explaining envinormental adaptations, were reported between two cucumber lines originating from two diverse envinorments
- ✓ Global Intra-Chromosomal Rearrangements of inversions & translocations of large regions, which could lead to envinormental adaptations of two cucumber lines, were reported
- ✓ Substantial differences in CRE content between all analyzed species and varieties (*C. sativus* (B10 and 9930)).
- ✓ Only a small fraction of the groups of orthologous genes with the highest sequence similarity in analyzed 4 species have the same CRE profiles in their promoters.
- ✓ ABA-treatment experiments together with *in silico* analysis of CRE shuffling explains why *C. sativus* is much more susceptible for cold and chilling stresses than *A. thaliana*.

Conclusion

Eukaryotic organisms are equipped with a high degree of freedom with respect to:

1. Variability of promoters in terms of regulatory elements,

2. (Intra-) Chromosomal rearrangements,

that allow for formation of new lines/varieties and species adapted to new ecological niches. Grants:

- Polish Ministry of Science & Higher Education: PBZ-MNiSW-2/3/2006/36, NN302429734, NN302363333,
- Foundation for Polish Science Welcome Program / European Regional Development Fund: Welcome 2008/1
- U.S. NIH: GM47853

Warsaw University of Life Sciences -- SGGW

People: Justyna Witkowicz Piotr Gawroński Joanna Dąbrowska **Alexandre Lomsadze** Magdalena Pawełkowicz Ewa Siedlecka Kohei Yagi Wojciech Pląder Anna Seroczyńska Mieczysław Śmiech Wojciech Gutman Katarzyna Niemirowicz-Szczytt Grzegorz Bartoszewski Norikazu Tagashira Yoshikazu Hoshi **Mark Borodovsky** Stanisław Karpiński **Stefan Malepszy Zbigniew Przybecki**