Copy number variation of individual cattle genomes using Next Generation Sequencing

Derek M. Bickhart, PhD
Bovine Functional Genomics Lab
Animal and Natural Resources Institute
USDA ARS BFGL
01/15/2012

Creating CNV maps with NGS data

Background and Introduction

Individualized CNV maps

Detection within populations

Background and Introduction

Genetic Variation

How genomes change over time

Sequence

- Single nucleotide variations SNP (human 60 million)
- Small insertions/deletions frameshift, microsatellite, minisatellite
- Mobile Elements SINE, LINE Transposition (300bp 6 kb)
- Genomic structural variation (1 kb 5 Mb)
 - Large-scale Insertions/Deletions (Copy Number Variation: CNV)
 - Segmental Duplications (> 1kb, > 90%)
 - Chromosomal Inversions, Translocations, Fusions.

Cytogenetics

CNVs contribute to phenotype

Figures Adapted from Snyder et al, 2010

Read Depth (RD) Detection

- Align reads to reference genome (used mrsFAST)
- Determine average RD and set Threshold
 - Threshold value: average + 4 Stdev
 - Normalized for GC bias
- Section genome into windows and call CNVs
- Analysis can be done in SD regions

RD provides genome-wide Copy Number (CN)

Advantages of this approach:

- Assign CN to Gene Regions
- •CN is not relative to other samples
- Works on all reference assemblies

Individualized CNV maps

Animals Selected

Animal Abbreviation	Breed	Coverage	
BINE	Nelore	High	
BTAN1	Angus	High	
BTAN2	Angus	High	
BTAN3	Angus	High	
втно	Holstein	Low	
DTTRACE	Hereford	Low	

Reference animal

CNV events more diverse than in humans

Experimental validation

• ~55% agreement with BAC FISH

82% agreement with qPCR assays

8% false discovery compared to aCGH

BSP30A is duplicated in all breeds

CN estimates give better resolution

Gene ID	BINE	BTAN1	BTAN2	BTAN3	BTHO	DTTRACE
Gene ID	RINE	RIANT	BIANZ	RIAN3	RIHO	DITRACE
68746A	7.9	9.7	8.7	7.5	11.8	3.6

Copy Number Gradient

Highest Lowest

Breed differences can be highlighted

Detection within Populations

Expanding the sample size allows high resolution detection

Improve analysis with multiple methods

SNP array data

CGH array data

Images adapted from Handsaker et al. 2010

Summary

Selected suitable detection strategy

Created high resolution individual maps

Transitioning to population scale analysis

Acknowledgements

- Dr. George Liu's lab
 - Dr. Yali Hou
 - Reuben Anderson
 - Alexandre Dimtchev
- USDA BFGL
 - Dr. Tad Sonstegard
 - Dr. Curtis Van Tassell
 - Dr. Steven Schroeder
- Dr. Evan Eichler's lab
- Dr. Jeremy Taylor's and Dr. Robert Schnabel's lab
- Dr. Jose Fernando Garcia

 Funded by National Research Initiative (NRI) Grant No. 2007-35205-17869 and 2011-67015-30183 from USDA-NIFA

This presentation's Poster Number: P0549

Buffalo CNV discovery Poster Number: P0574