

THE FORAGE AND RANGE RESEARCH LABORATORY

Plants for the West

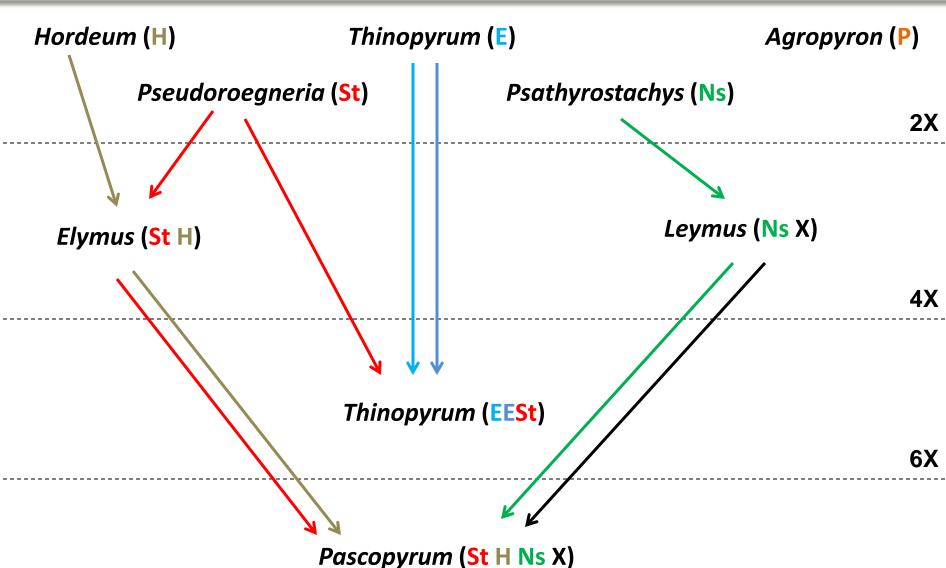
Steve Larson, Ivan Mott, Shaun Bushman, and Richard Wang

Functional working groups at FRRL

Biomass and Biofuels

Rangeland Ecology and Restoration

Low-Maintenance Turfgrasses



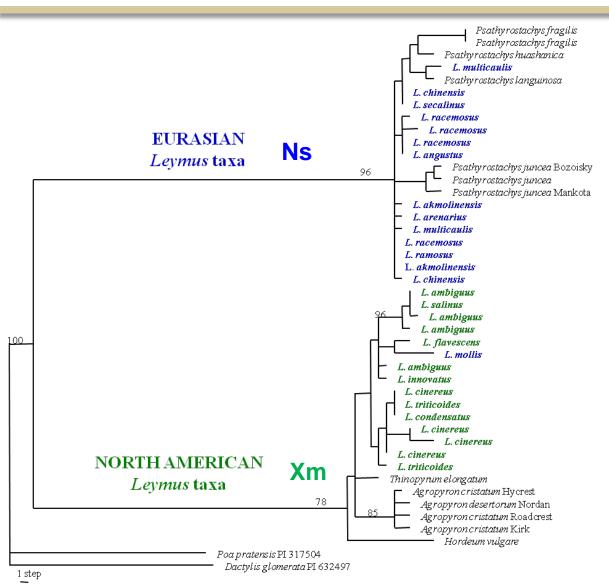
Irrigated Pasture Plants

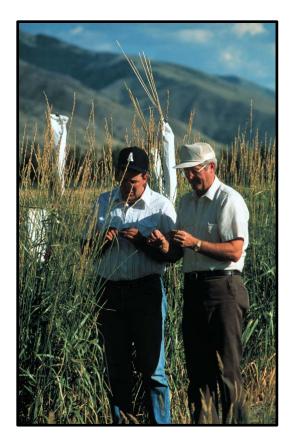
Perennial Triticeae grasses are classified into nine genera comprised of six distinct genomes

Psathyrostachys and **Leymus** "wildryes" share the same Ns genome

Psathyrostachys

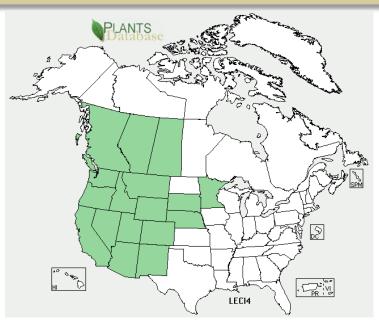
- Eight diploid or autopolyploid species, which define Ns genome
- Native to arid regions of central Asia
 - Russian wildrye (P. juncea) is valuable forage its native range and western North America


<u>Leymus</u>


- 50 allopolyploid species continaing the Ns and Xm genomes
- Most abundant in eastern Asia
 - Important native forages such as *L. chinensis*
- 15 North American taxa
 - 10 native
 - 1 circumboreal (*L. mollis*)
 - 4 introduced, including cultivated Altai wildrye (L. angustus)

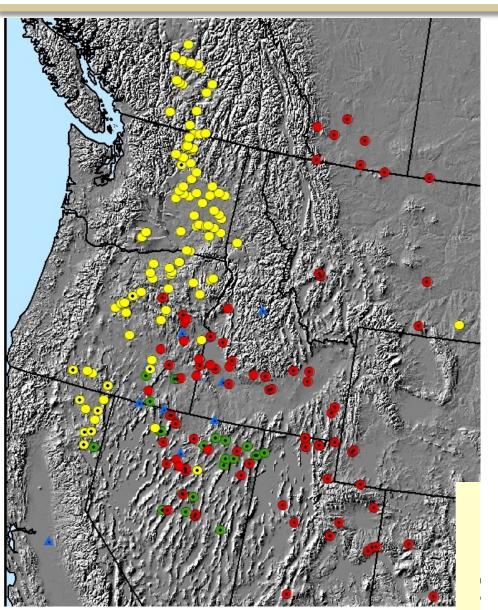
Psathyrostachys and Leymus species used for gene introgression in wheat

Phylogeny of Leymus chloroplast genomes



L. racemosus X L. cinereus / L. triticoides

Basin wildrye (*Leymus cinereus*)


- Largest native grass of western North America
- Where water and soil accumulate, croplands
- Good early spring forage, grows coarse in summer
- Elevated growing point susceptible to clipping
- Large prolific spikes, seed shattering explosive
- Poor seedling establishment
- Five U.S. & Can. cultivars / 231 USDA accessions

DNA fingerprinting and flow cytometry analysis

basin wildrye ecotype

4x

Ç

Ö

Western

0

Ø

Rocky Mountain

O

Great Basin

basin wildrye cultivars

O

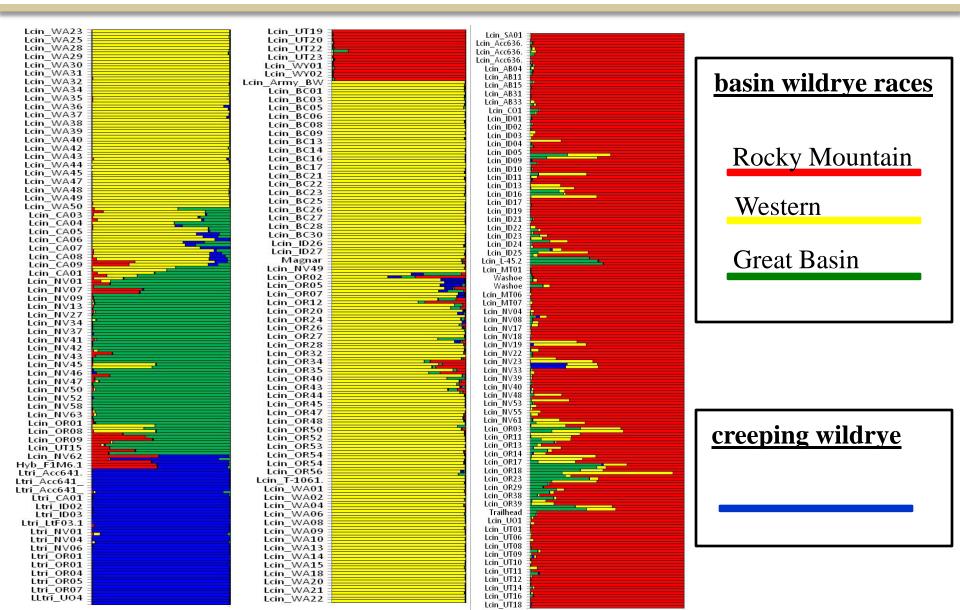
Magnar

Trailhead, Tetra, and Washoe

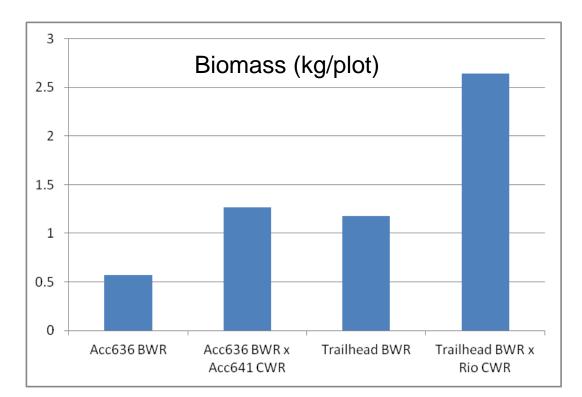
Continental (Magnar x Trailhead)

Creeping wildrye (Leymus triticoides)

- Relatively short (up to 1.3 m) but strongly rhizomatous grass
- Once dominant species in Central Valley, where it is still cultivated as saline biomass crop
- Good clipping and grazing tolerance
- Non-shattering, but recalcitrant seed dormancy
- One cultivar, Rio / 19 USDA accessions



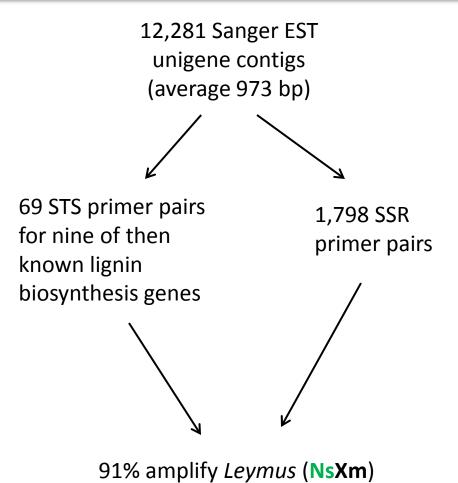
Bayesian cluster analysis of 600 genotypes reveals some hybridization between species and ecotypes



Experimental creeping x basin wildrye hybrids

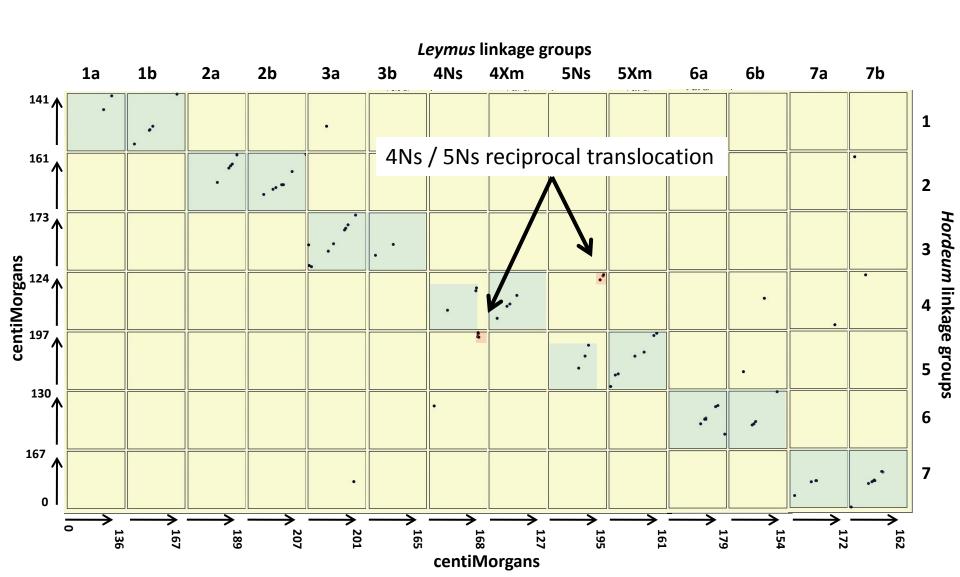
Functionally important traits: rhizomes, seed dormancy, salt-tolerance, seed-shattering, and biomass heterosis.

Hypothesis: The tall plant height, large stems, and large leaves from basin wildrye combined with the prolific rhizomes and tillers of creeping wildrye produce biomass heterosis.



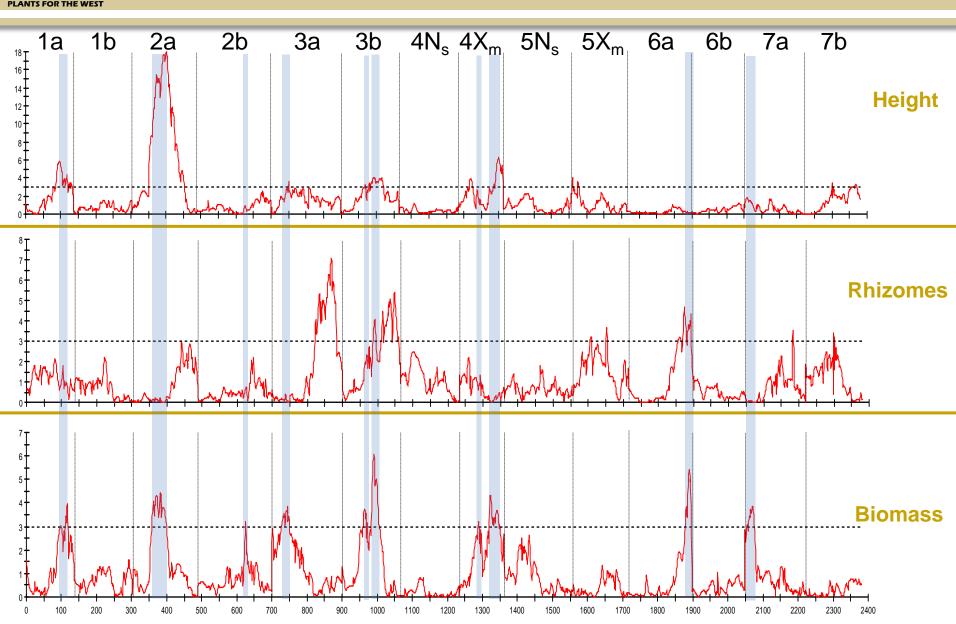
EST library from perennial rhizome/tiller buds creeping x basin wildrye hybrids

74% Psathrostachys juncea (Ns)


Genetic maps for creeping x basin wildrye hybrids

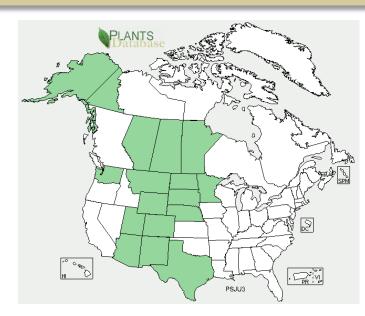
	AFLP	EST SSR	Lignin EST STS	Heterologous RFLP/STS	Total no. markers	Map Distance (cM)	Markers cM ⁻¹	Oryza alignments	Brachypodium alignments	Hordeum alignments
LG1a	28	18	1	4	51	135.9	2.7	16	21	2
LG1b*(6b)	43	20	0	1	64	166.9	2.6	18	19	5
LG2a	39	18	2	4	63	188.5	3	14	18	5
LG2b	23	34	1	4	62	207.2	3.3	25	32	8
LG3a	31	28	2	6	67	200.8	3	28	30	11
LG3b	28	19	0	5	52	164.7	3.2	17	20	2
LG4Ns	16	29	0	5	50	168.1	3.4	24	30	8
LG4Xm	18	25	0	7	50	127.3	2.5	24	26	4
LG5Ns	27	27	3	3	60	194.8	3.2	28	27	6
LG5Xm	25	27	3	4	59	160.5	2.7	28	29	7
LG6a	26	22	1	1	50	179.2	3.6	19	23	7
LG6b*(1b)	26	18	2	1	47	153.6	3.3	16	20	6
LG7a	24	33	4	1	61	171.7	2.8	28	32	6
LG7b	23	31	7	0	60	161.8	2.7	35	34	11
Overall	377	349	26	46	799	2381	3	320	360	88

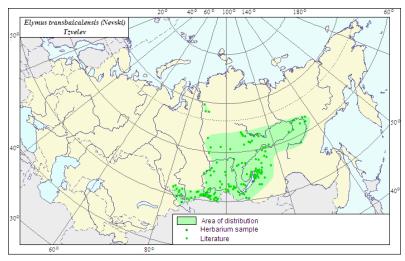
Larson, S.R., Kishii, M., Tsujimoto, H., Qi, L., Chen, P., Lazo, G., Jensen, K.B., Wang, R.-R.C. (2011) *Leymus* EST linkage maps identify 4**Ns**L-5**Ns**L reciprocal translocation, wheat-*Leymus* chromosome introgressions, and functionally important gene loci. Theor Appl Genet (DOI)



Alignment of 88 mapped *Leymus* ESTs to a highdensity *Hordeum* EST map

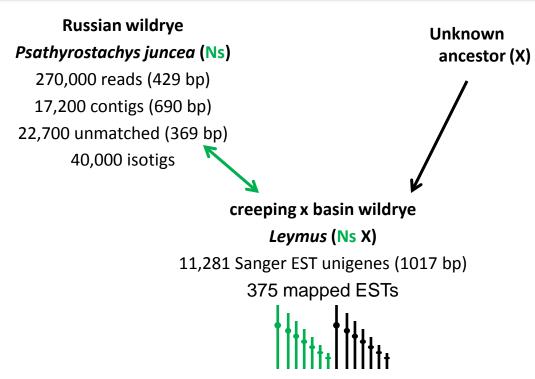
Comparison of QTLs that controlling plant height, rhizomes, biomass heterosis, and other traits

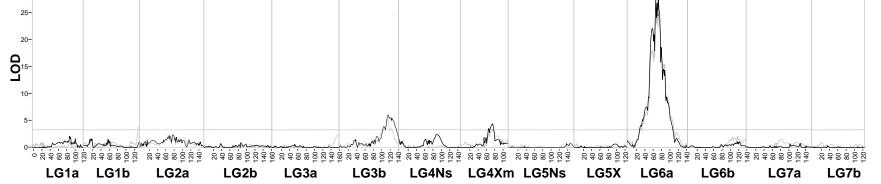




Russian wildrye (*Psathyrostachys juncea*)

- One of most versatile forage grasses for dryland pastures (e.g late summer through winter)
- 20 40 cm precipitation
- Stays greener and cures later with higher protein
- The *psathyros* "fragile" *stachys* "spike" can be problematic in seed prodution
- At least 9 U.S. & Can. Cultivars / 202 accessions





Transcriptome library of Russian wildrye

Three perennial "wheatgrass" genera share the same St chloroplast and nuclear genome

Psuedoroegneria

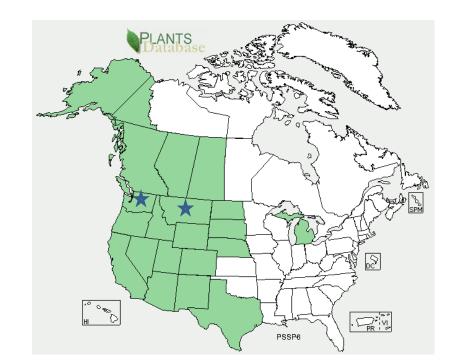
- 15-20 Diploid or autopolyploid species, which define St genome
 - Mostly either Asian or Eurasian
 - One species, bluebunch, native but very widespread and abundant in western North America

<u>Elymus</u>

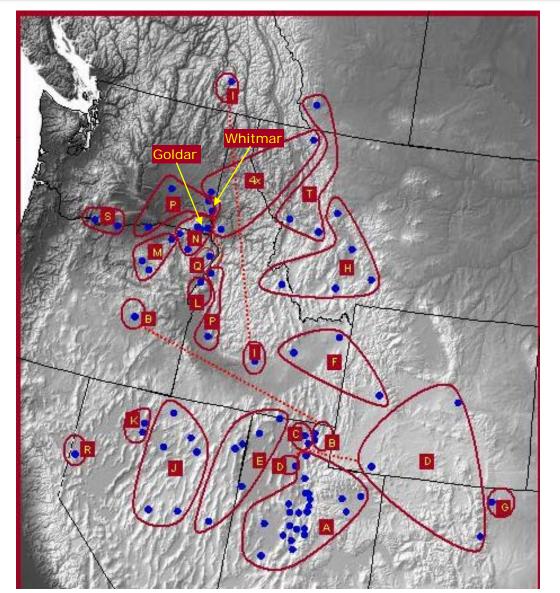
- 150 allopolyploid species containing St and H genomes
- 39 native or naturalized species in North America
 - Elymus repens

<u>Pascopyrum</u>

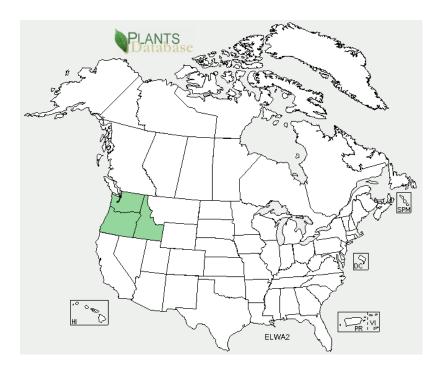
One allooctoploid (StHNsXm) species, western wheatgrass, endemic to North America



Bluebunch wheatgrass (*Pseudoroegneria spica*ta)

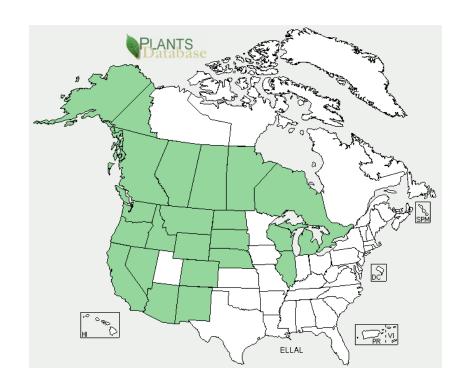

- Most widespread, abundant native bunchgrass western U.S.
- 30 50 cm precipitation
- Very palatable, nutritious forage
- Does not tolerage heavy grazing, easily overgrazed
- Four cultivars / 184 USDA accesions

Bayesian cluster analysis of 565 genotypes identify 20 metapopulations of bluebunch wheatgrass


	<i>F</i> (AFLP)	π ± SE (per 1000)
P-7 MOPX	0.563	38.7 ± 1.6
Goldar	0.597	34.2 ± 1.5
Whitmar	0.600	33.9 ± 1.5

Allotetraploid Snake River wheatgrass (*Elymus wawawaiensis*)

- Very similar to diploid bluebunch wheatgrass, but contains both St and H genomes
- Two cultivars / 47 USDA accessions
- Secar has been most widely used native grass cultivar, because it was mistaken as BBWG
- Senstive to clipping / overgrazing



Streambank wheatgrasses (*Elymus lanceolatus*)

- Allotetraploid with St and H genomes
- Forage and low-maintenance turf types
- Better clipping and grazing tolerance
- Lower forage yield potential
- At least 4 cultivars
- 29 USDA accessions

Snake River x Streambank wheatgrass hybrids

- Rhizomes
- Turfiness
- Forage yield

EST libraries for the St and H genomes of Pseudoroegneria and Elymus "wheatgrasses"

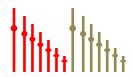
Bluebunch wheatgrass

Pseudoroegneria (St)

8,780 Sanger EST

unigenes (1017 bp)

451 polymorphic SSR s


Snake River x Streambank

Elymus (St H)

7,212 Sanger EST unigenes

133 polymorphic SSRs

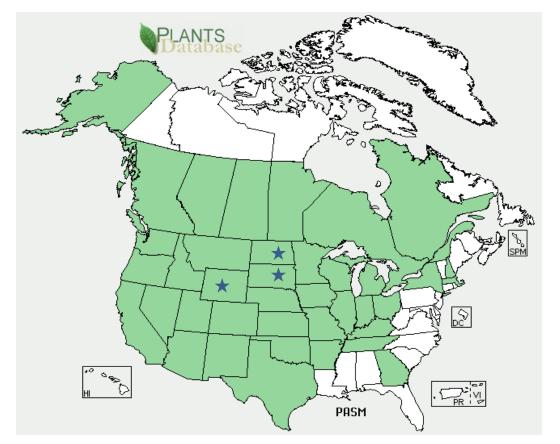
Genetic maps for Snake River x Streambank wheatgrass hybrids

Elymus linkage group	Subgenome	AFLP markers	Elymus (StH) markers	Psuedoroegneria (St) EST-SSRs	%St
1	Н	32	6	0	0.0
2	Н	33	6	0	0.0
3	Н	34	11	1	8.3
4	Н	23	4	0	0.0
5	Н	27	5	1	16.7
6	Н	24	7	0	0.0
7	Н	31	5	1	16.7
1	St	17	5	4	44.4
2	St	33	10	1	9.1
3	St	28	4	6	60.0
4	St	19	5	9	64.3
5	St	38	4	3	42.9
6	St	26	2	4	66.7
7	St	35	5	7	58.3
		400	79	37	

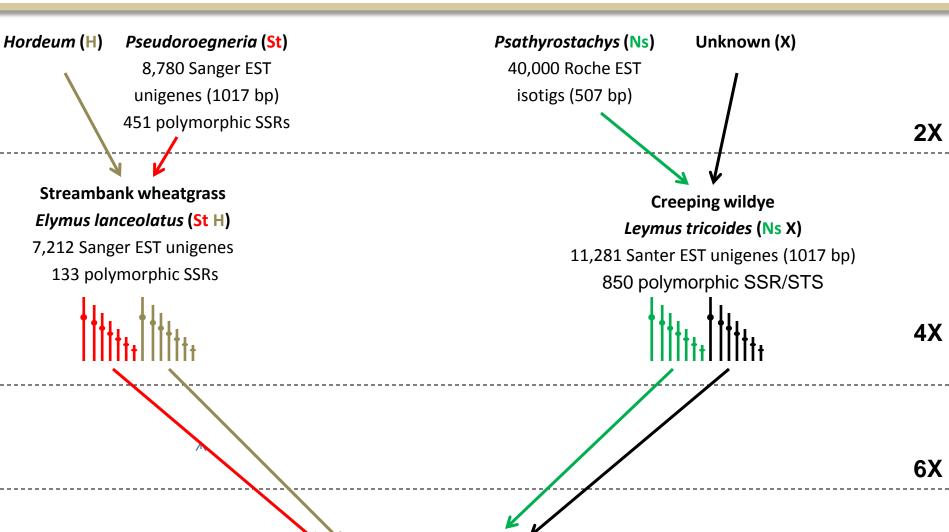
Mott, I.W., Larson, S.R., Jones, T.A., Robins, J.G., Jensen, K.B., Peel, M.D. (2011) A molecular genetic linkage map identifying the St and H subgenomes of *Elymus* (Poaceae: Triticeae) wheatgrass. Genome 54:1-10

Synteny among rice, wheat, and *Elymus* wheatgrass identify homoeologous linkage groups

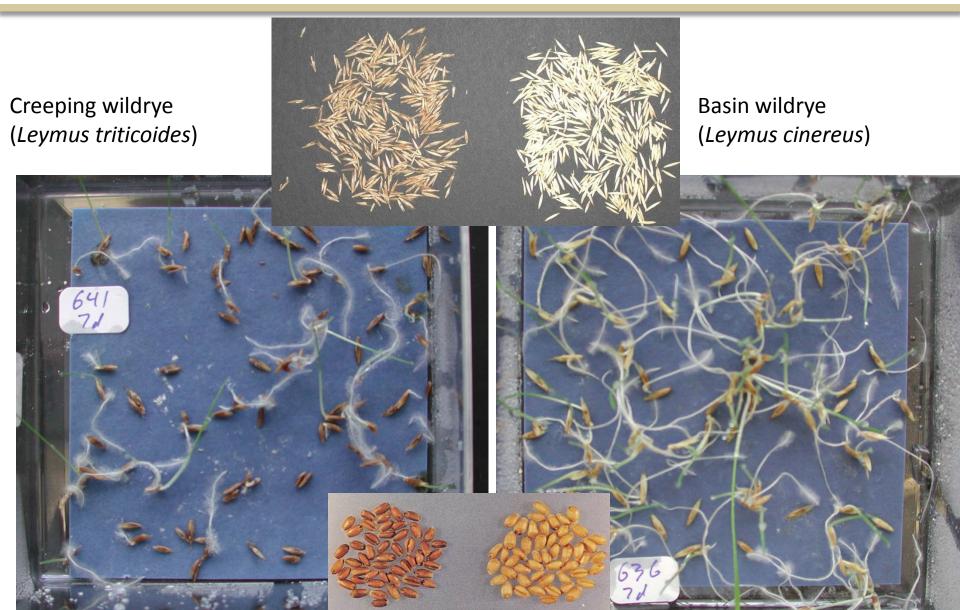
	Os 5 (Ta 1)	Os 10 (Ta 1)	Os 4 (Ta 2)	Os 7 (Ta 2)	<i>Os</i> 1 (Ta3)	Os 11 (Ta 4)	Os 3 (Ta 4-5)	Os 9 (Ta 5)	Os 12 (Ta 5)	Os 2 (Ta 6)	Os 6 (Ta 7)	Os 8 (Ta 7)
Elymus 1 H	3	2							1			
Elymus 1 St	5	1			1			1				
Elymus 2 H			2	3								
Elymus 2 St	1		4	7			1					
Elymus 3 H				2	5						1	
Elymus 3 St	1				5							2
Elymus 4 H		1				0	3					
Elymus 4 St			1			1	2		2	1	1	
Elymus 5 H				1			2	1	1		1	
Elymus 5 St								0	3	3		
Elymus 6 H	1	1					1			3		
Elymus 6 St										2	1	
Elymus 7 H					1					1	4	0
Elymus 7 St			1		1					1	7	0


Mott, I.W., Larson, S.R., Jones, T.A., Robins, J.G., Jensen, K.B., Peel, M.D. (2011) A molecular genetic linkage map identifying the St and H subgenomes of *Elymus* (Poaceae: Triticeae) wheatgrass. Genome 54:1-10

Western wheatgrass (Pascopyrum smithii)



- Only known species of allooctoploid (StHNsX) genus
- Most widespread and abundant native sod grass of Northern Great Plains
- Seed dormancy problems


Genetic resources from *Elymus* and *Leymus* have strong potential in western wheatgrass

Pascopyrum (St H Ns X)

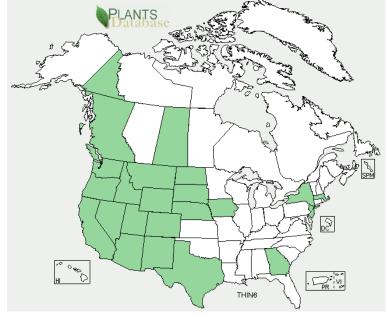
Genetic markers for seed dormancy in *Leymus* may have application in western wheatgrass

Intermediate and tall wheatgrasses share the E genome of genus *Thinopyrum*

Thinopyrum

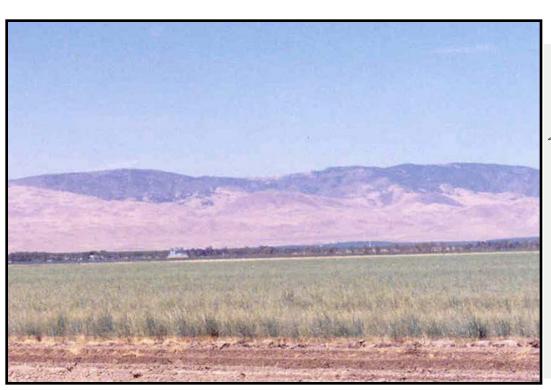
- Ten diploid, autopolyploid or allopolyploid species containing at least one E genome (set)
- Intermediate and tall wheatgrasses are cultivated and widely naturalized throughout North America
- Native to Mediteranean region and other parts of Eurasia

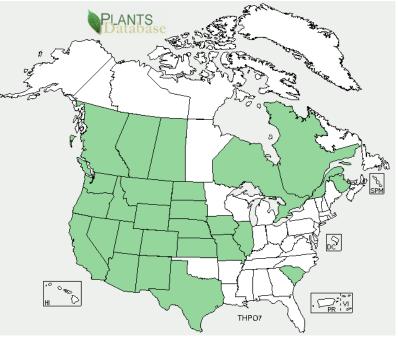
_



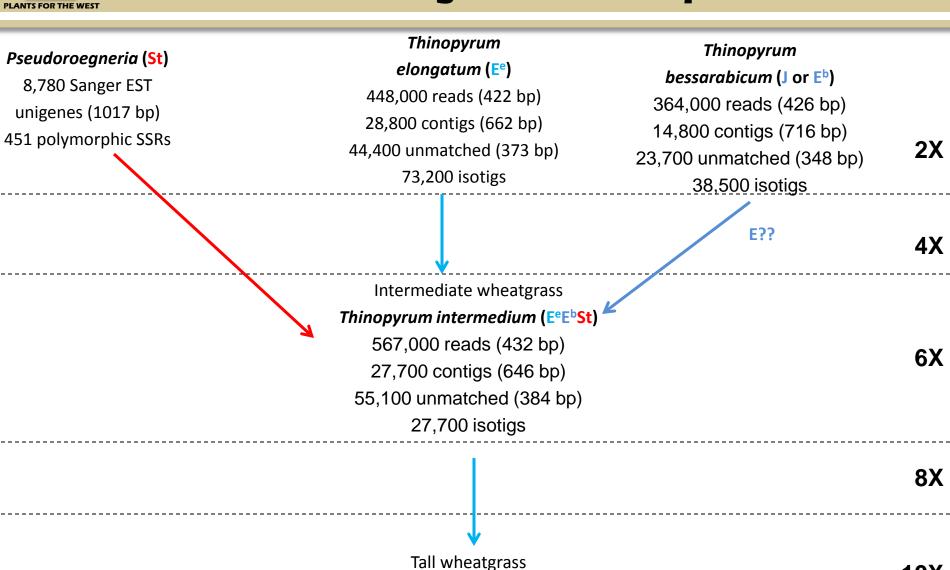
Intermediate wheatgrass (Thinopyrum intermedium)

- Relatively drought tolerant hay and pasture grass, very good single-crop hay
- Many chromosome introgressions in wheat
- Perennial cereal breeding in U.S.
- At least 12 "active" cultivars released in U.S. / Can.
- 252 USDA accessions




Tall wheatgrass (Thinopyrum ponticum)

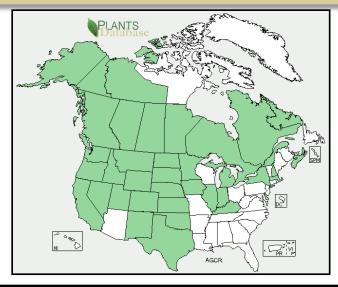
- Used for hay, pasture, and conservation
- Very salt tolerant with high biomass potential
- Poor forage quality
- 10*n*=70 autopolyploid (genetically recalcitrant)
- Six cultivars released in U.S. and Canada
- 18 USDA accessions



Transcriptome libaries for allohexaploid intermediate wheatgrass and it's diploid ancestors

Thinopyrum ponticum (Ee Ee Ee Ee Ee)

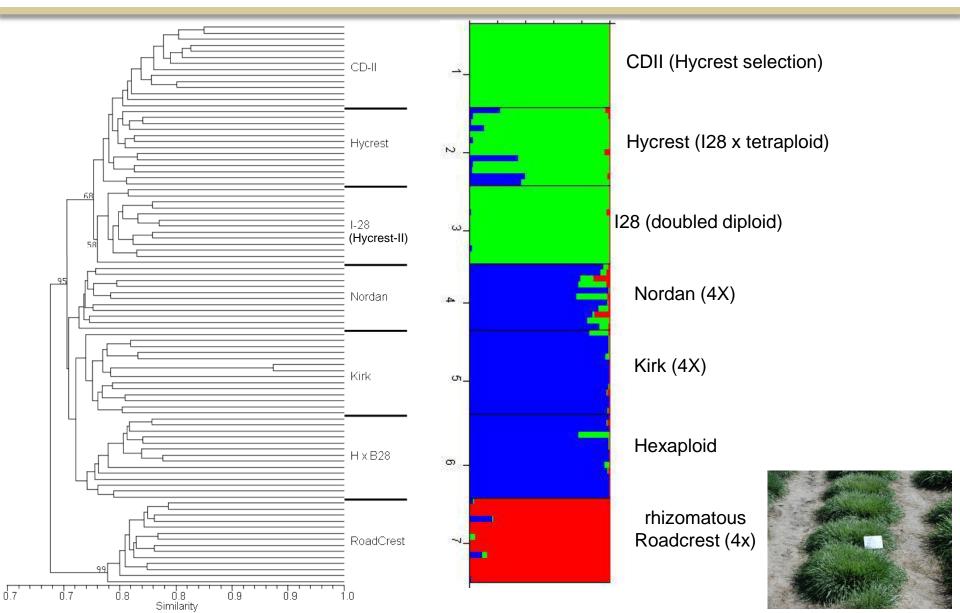
10X

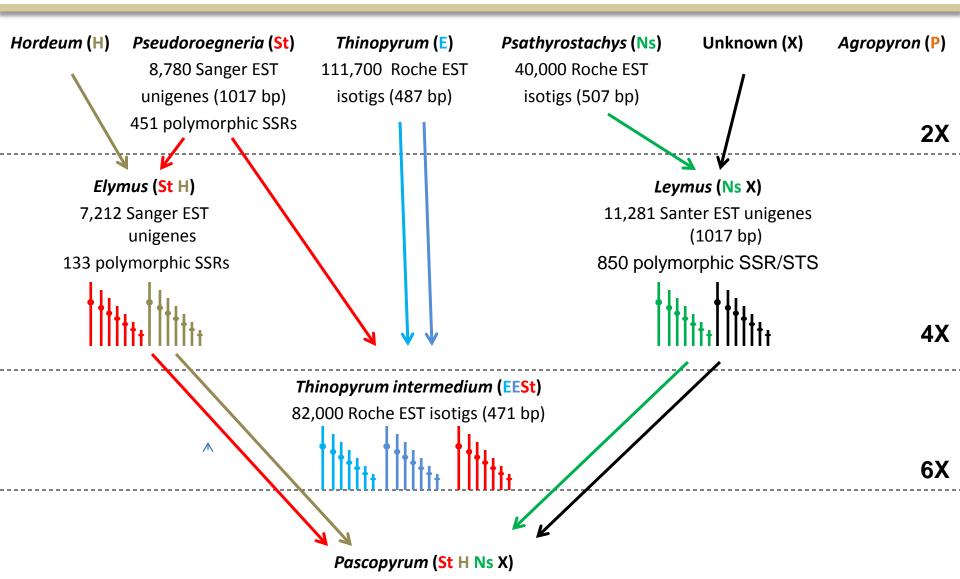

Development of genetic mapping families for intermediate wheatgrass forage varieties

		High Qua	lity	High Yield	<u>d</u>
		PI 383561 (Turkey)	PI 401020 (Turkey)	PI 098568 Oahe (Russian via SD)	PI 440002 (K-C, Russia)
<u>High</u>	PI 383561 (Turkey)				
Quality	PI 401020 (Turkey)				
<u>High</u>	PI 098568 Oahe (Russia vi SD)	52 + 89	74 + 75		
<u>Yield</u>	PI 440002 arachay-Cherkess)	58 + 11	15 + 21	110 + 5	

Crested wheatgrass (Agropyron spp.)

- Widely naturalized and recommended forage, withstands heavy grazing
- Two recognized taxa in U.S. (A. cristatum and A. fragile)
- Diploid or autopolyploid forms of P genome
- About 10 cultivars released in U.S. and Can.
- More than 700 USDA accessions





Crested wheatgrass (Agropyron spp.)

Summary of genetic resources representing genomic diversity among perennial Triticeae

