Host Genetic Resistance Sustains HVT Protective Efficacy Comparable to CVI988/Rispens' in Lines of Chickens Relatively Resistant to Marek's Disease Huanmin Zhang¹, Shuang Chang^{1, 2}, John R. Dunn¹ Mohammad Heidari¹ Jiuzhou Song¹, Janet E. Fulton¹ ¹USDA, Agriculture Research Service, Avian Disease and Oncology Laboratory East Lansing, Michigan, USA > ²Department of Animal Science, Michigan State University East Lansing, Michigan, USA ³Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA ⁴Hy-Line International, Research Department, Dallas Center, Iowa, USA PAG XX, Poultry Genome Workshop January 15, 2012 #### MD and Control of MD ■ MD is caused by an α-herpesvirus known as Marek's disease virus (MDV). ■ MD has being controlled by wide use of MD vaccines in commercial chickens since 1970 (Witter, 1987. Avian Dis. 31:752). #### Three Commonly Used Vaccines - HVT has been used to prevent MD in US commercial chickens since 1970 (Witter, 1987. Avian Dis. 31:752). - The HVT (FC126) + SB-1 bivalent vaccine has been licensed for use in US since 1983 (Witter, 1987. Avian Dis. 31:752). - CVI988/Rispens was imported to US in 1990 (Witter et al., 1995. Avian Dis. 39:269). - CVI988/Rispens remains as the gold standard of MD vaccines (Witter et al., 1992. In: 4th Intl Symp. on MD. pp315). #### Factors Affecting Vaccine Efficacy - Many factors affect vaccine efficacy, which include: - > Vaccinal viruses (Serotypes 1, 2, and 3) - vaccine dosage - > number of vaccinations - age at vaccination - > the time interval between vaccination and infection - maternal antibody - host genetics (Chang et al., 2010; Gavora and Spencer, 1979; Gimeno, 2008; Islam et al., 2007; Sharma and Graham, 1982; Witter, 1997; Witter and Lee, 1984; Wu et al., 2009). #### MHC and Vaccine Efficacy - *MHC B* haplotypes affect host immunoresponse to MD vaccines. - Chickens with <u>B*2</u>, B*13, <u>B*15</u>, or <u>B*21</u> haplotype(s) respond to serotype 1 vaccines with a higher immunoresponse than chickens with other *B* haplotypes (Bacon and Witter, 1993, Avian Dis. 37:59;1994, Poult. Sci. 73:481). ■ Chickens with B*5 respond to serotype 2 vaccine better than serotype 1 vaccine (Bacon and Witter, 1994. Avian Dis. 38:65). ## Non-MHC Genetic Background and Vaccine Efficacy • vv+MDV challenge of HVT vaccinated chickens from two inbred progenitor lines (6₃ & 7₂) and a series of 19 recombinant congenic strains (RCS), line 6_3 : PI = 72% line 7_2 : PI = 0% RCS: PI ranged 43% – 82% (Chang et al., 2010. Poult. Sci. 89:2083-2091). • Chicken line non-MHC genetic background by vaccine interaction may exist and affect vaccinal protective efficacy. (Chang et al., 2012. World J. Vaccines, in press) #### This Study - To re-examine host genetics effect on vaccine protective efficacy. - > Using commercially recommended dosages. - Using experimental lines of chickens (same B*2 haplotype). - Using commercial egg layers (While egg layers: MHC B*2, B*15, B*21; Brown egg layers: MHC unknown) - Vaccinated and challenged under controlled experimental conditions. #### Vaccination and Infection - Vaccination: Chickens from each line - > unvaccinated (control) - > vaccinated with a commercial dosage of HVT or CVI988/Rispens. - Infection: Chickens of all trials were challenged on day 5 post hatch with 500 PFU of the vv+ 648A MDV intraabdominally. #### **Phenotype Observations** - Chick mortality: died between hatch day and 7 DPI and were removed from the data set prior to analyses. - MD: Chickens died after 8 DPI or developed visceral gross tumors and/or nerve enlargement(s). - Non-MD: Chickens euthanized at the end of trials without any gross tumor. ### MD% and PI under commercial PFU dosages Experimental chickens: Commercial Chickens: | Line | Vaccine | MD% | | PI | |------------------------------------|-----------|-----|-----------------------|----| | Line 6 ₃ | Rispens 1 | 33 | 9 ^b | 66 | | (B*2) | Rispens 2 | 27 | 8 ^b | 72 | | | HVT 1 | 17 | 7 ^b | 82 | | | HVT 2 | 14 | 7 ^b | 86 | | | Unvac. | 97 | 3 a | 0 | | Line 7 ₂ (<i>B</i> *2) | Rispens 1 | 73 | 8 ^b | 27 | | | Rispens 2 | 31 | 9c | 69 | | | HVT 1 | 100 | 0a | 0 | | | HVT 2 | 90 | 6 ^{ab} | 10 | | | Unvac | 100 | <mark>0</mark> a | 0 | | Line | Vaccine | MD% | | PI | |------------------------------------|-----------|-----|-----------------------|----| | White egg layers (B*2, B*15, B*21) | Rispens 1 | 54 | 8 ^b | 46 | | | Rispens 2 | 24 | 7 ^c | 76 | | | HVT 1 | 60 | 8 ^b | 40 | | | HVT 2 | 46 | 8bc | 54 | | | Unvac. | 100 | O ^a | 0 | | Brown egg layers (MHC B*?) | Rispens 1 | 49 | 8 ^b | 50 | | | Rispens 2 | 8 | 4 ^c | 92 | | | HVT 1 | 42 | 8 ^b | 57 | | | HVT 2 | 53 | 8 ^b | 46 | | | Unvac | 97 | 3a | 0 | #### Summary ■ Both HVT 1 and HVT 2 conveyed comparable protective efficacy as did the CVI988/Rispens 1 and 2, in chickens from the highly inbred experimental line 63, based on MD%, PI and survival days. #### Summary (Continued) Similar results were observed in chickens from the two commercial egg layer flocks except: * CVI988/Rispens 2 protected White egg layers and Brown egg layers significantly better than CVI988/Rispens 1 and the HVTs. #### Summary (Continued) Similar results were observed in chickens from the two commercial egg layer flocks except: * CVI988/Rispens 2 protected White egg layers and Brown egg layers significantly better than CVI988/Rispens 1 and the HVTs. #### Discussions ■ HVT protective efficacy was strikingly different between the lines 6₃ and 7₂ chickens. ■ The good protective efficacy of HVT in MD resistant lines (6₃, white egg layers, and brown egg layers) was highly likely attributable to the host genetic resistance to MD. #### Discussions (Continued) - HVT is relatively less expensive - HVT should be used to protect chickens like line 6₃, but not something like line 7₂. - The observed superior protection of CVI988/Rispens 2 due to higher titers of vaccinal viruses in a single (commercial) dosage and host *MHC B haplotypes*? ### Thank you for your attention!