Host Genetic Resistance Sustains HVT Protective Efficacy Comparable to CVI988/Rispens' in Lines of Chickens Relatively Resistant to Marek's Disease

Huanmin Zhang¹, Shuang Chang^{1, 2}, John R. Dunn¹ Mohammad Heidari¹ Jiuzhou Song¹, Janet E. Fulton¹

¹USDA, Agriculture Research Service, Avian Disease and Oncology Laboratory East Lansing, Michigan, USA

> ²Department of Animal Science, Michigan State University East Lansing, Michigan, USA

³Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA

⁴Hy-Line International, Research Department, Dallas Center, Iowa, USA

PAG XX, Poultry Genome Workshop January 15, 2012

MD and Control of MD

■ MD is caused by an α-herpesvirus known as Marek's disease virus (MDV).

■ MD has being controlled by wide use of MD vaccines in commercial chickens since 1970

(Witter, 1987. Avian Dis. 31:752).

Three Commonly Used Vaccines

- HVT has been used to prevent MD in US commercial chickens since 1970 (Witter, 1987. Avian Dis. 31:752).
- The HVT (FC126) + SB-1 bivalent vaccine has been licensed for use in US since 1983 (Witter, 1987. Avian Dis. 31:752).
- CVI988/Rispens was imported to US in 1990 (Witter et al., 1995. Avian Dis. 39:269).
- CVI988/Rispens remains as the gold standard of MD vaccines (Witter et al., 1992. In: 4th Intl Symp. on MD. pp315).

Factors Affecting Vaccine Efficacy

- Many factors affect vaccine efficacy, which include:
 - > Vaccinal viruses (Serotypes 1, 2, and 3)
 - vaccine dosage
 - > number of vaccinations
 - age at vaccination
 - > the time interval between vaccination and infection
 - maternal antibody
 - host genetics

(Chang et al., 2010; Gavora and Spencer, 1979; Gimeno, 2008; Islam et al., 2007; Sharma and Graham, 1982; Witter, 1997; Witter and Lee, 1984; Wu et al., 2009).

MHC and Vaccine Efficacy

- *MHC B* haplotypes affect host immunoresponse to MD vaccines.
- Chickens with <u>B*2</u>, B*13, <u>B*15</u>, or <u>B*21</u> haplotype(s) respond to serotype 1 vaccines with a higher immunoresponse than chickens with other *B* haplotypes

(Bacon and Witter, 1993, Avian Dis. 37:59;1994, Poult. Sci. 73:481).

■ Chickens with B*5 respond to serotype 2 vaccine better than serotype 1 vaccine

(Bacon and Witter, 1994. Avian Dis. 38:65).

Non-MHC Genetic Background and Vaccine Efficacy

• vv+MDV challenge of HVT vaccinated chickens from two inbred progenitor lines (6₃ & 7₂) and a series of 19 recombinant congenic strains (RCS),

line 6_3 : PI = 72%

line 7_2 : PI = 0%

RCS: PI ranged 43% – 82%

(Chang et al., 2010. Poult. Sci. 89:2083-2091).

• Chicken line non-MHC genetic background by vaccine interaction may exist and affect vaccinal protective efficacy. (Chang et al., 2012. World J. Vaccines, in press)

This Study

- To re-examine host genetics effect on vaccine protective efficacy.
 - > Using commercially recommended dosages.
 - Using experimental lines of chickens (same B*2 haplotype).
 - Using commercial egg layers
 (While egg layers: MHC B*2, B*15, B*21;
 Brown egg layers: MHC unknown)
 - Vaccinated and challenged under controlled experimental conditions.

Vaccination and Infection

- Vaccination: Chickens from each line
 - > unvaccinated (control)
 - > vaccinated with a commercial dosage of HVT or CVI988/Rispens.
- Infection: Chickens of all trials were challenged on day 5 post hatch with 500 PFU of the vv+ 648A MDV intraabdominally.

Phenotype Observations

- Chick mortality: died between hatch day and
 7 DPI and were removed from the data set prior to analyses.
- MD: Chickens died after 8 DPI or developed visceral gross tumors and/or nerve enlargement(s).
- Non-MD: Chickens euthanized at the end of trials without any gross tumor.

MD% and PI under commercial PFU dosages

Experimental chickens:

Commercial Chickens:

Line	Vaccine	MD%		PI
Line 6 ₃	Rispens 1	33	9 ^b	66
(B*2)	Rispens 2	27	8 ^b	72
	HVT 1	17	7 ^b	82
	HVT 2	14	7 ^b	86
	Unvac.	97	3 a	0
Line 7 ₂ (<i>B</i> *2)	Rispens 1	73	8 ^b	27
	Rispens 2	31	9c	69
	HVT 1	100	0a	0
	HVT 2	90	6 ^{ab}	10
	Unvac	100	<mark>0</mark> a	0

Line	Vaccine	MD%		PI
White egg layers (B*2, B*15, B*21)	Rispens 1	54	8 ^b	46
	Rispens 2	24	7 ^c	76
	HVT 1	60	8 ^b	40
	HVT 2	46	8bc	54
	Unvac.	100	O ^a	0
Brown egg layers (MHC B*?)	Rispens 1	49	8 ^b	50
	Rispens 2	8	4 ^c	92
	HVT 1	42	8 ^b	57
	HVT 2	53	8 ^b	46
	Unvac	97	3a	0

Summary

■ Both HVT 1 and HVT 2 conveyed comparable protective efficacy as did the CVI988/Rispens 1 and 2, in chickens from the highly inbred experimental line 63, based on MD%, PI and survival days.

Summary (Continued)

Similar results were observed in chickens from the two commercial egg layer flocks except:

* CVI988/Rispens 2 protected White egg layers and Brown egg layers significantly better than CVI988/Rispens 1 and the HVTs.

Summary (Continued)

Similar results were observed in chickens from the two commercial egg layer flocks except:

* CVI988/Rispens 2 protected White egg layers and Brown egg layers significantly better than CVI988/Rispens 1 and the HVTs.

Discussions

■ HVT protective efficacy was strikingly different between the lines 6₃ and 7₂ chickens.

■ The good protective efficacy of HVT in MD resistant lines (6₃, white egg layers, and brown egg layers) was highly likely attributable to the host genetic resistance to MD.

Discussions (Continued)

- HVT is relatively less expensive
- HVT should be used to protect chickens like line 6₃, but not something like line 7₂.
- The observed superior protection of CVI988/Rispens 2 due to higher titers of vaccinal viruses in a single (commercial) dosage and host *MHC B haplotypes*?

Thank you for your attention!

