

ORACLE®


Cloud Computing: Bringing Elastic Computation to Your Datasets

Harry J Foxwell, PhD Principal Consultant for Cloud Computing, Oracle Public Sector HW harry.foxwell@oracle.com

Everyone to The Cloud! Now! Hurry!

To the cloud! Wait, the what?

COURTESY: MICROSOF

Cloud Computing is:

"Cloud computing is a [business AND technical] model for enabling convenient, on-demand network access [from ANY device...PC, Laptop/Tablet, SmartPhone] to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction." -- NIST

NIST Cloud Definition & Characteristics

http://www.nist.gov/itl/cloud/index.cfm

On-Demand Self-Service

Broad Network Access

Resource Pooling

Rapid Elasticity

Measured Service

Delivered as:

SaaS (Software as a Service)

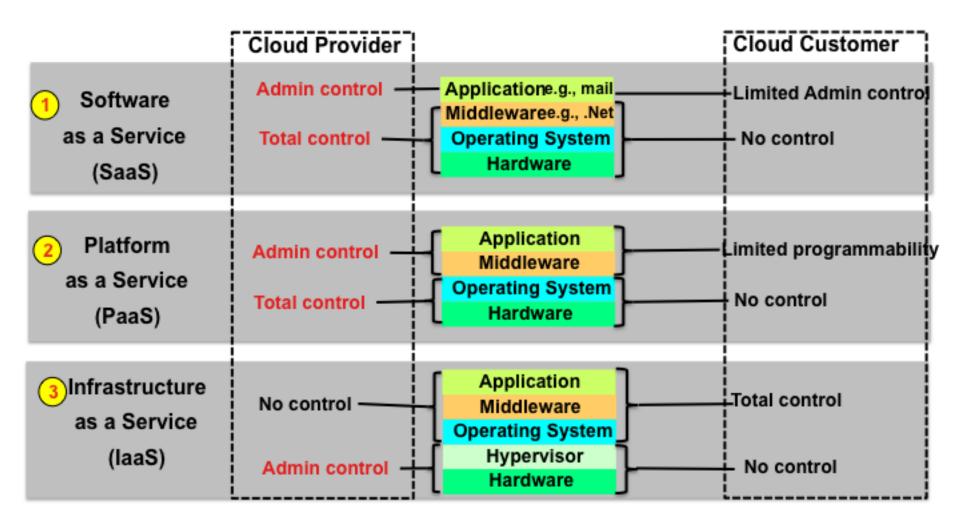
PaaS (Platform as a Service)

laaS (Infrastructure as a Service)

Cloud Computing: The 5 Essential Characteristics

- On-demand, self-service
 - by users
 - by developers
 - by architects
- Resource pooling
 - Shared resources
- Rapid elasticity
 - provision to use
 - release when done
- Measured service
 - metering/chargeback
- Network access
 - any device, anywhere
 - PC, laptops,
 - smartphones, tablets,

NIST Reference Architecture



Information Technology Laboratory Cloud Computing Program

Who has Control & Who can See What

"Public" and "Private" Clouds

Public:

- Google, Amazon EC2, eBay, MS Azure, iCloud, SalesForce, Oracle, ...
- Rent-A-Cloud: Pay by the usage metric
 - CPU, Memory,
 Storage, Bandwidth
 - Contract for SLAs: response time, security, backup & recovery

Private:

- DIY for your users/ members
- Provide laaS, PaaS, SaaS, DBaaS, STORaaS, ...
- For consolidation, virtualization, of existing IT infrastructure
- Moving applications to big data repositories

Essential Cloud Technologies for moving applications to big data repositories

Massive, elastic compute scalability

- Rapid provisioning of
 - apps, OS, virtualization
 - CPUs, networks, memory, I/O

Big, fast storage

Capacity, data integrity & privacy/security

Fast system interconnects

Data transfer/bandwidth

Cloud management

User, developer, administrator self-service

Open standards & Interfaces

Commercial & Open Source

ORACLE'

Wellcome Trust Sanger Institute

Oracle Database 11*g* powers the Institute's massively parallel sequencing archive (MPSA), a 500 terabyte repository used for processing DNA samples that is currently growing at a rate of five terabytes each week.

- Made multi-gigabyte files accessible to more than 800 scientists and researchers
- Optimized data storage and system management
- Replicated data in real time to ensure 24/7 global availability
- Cut database server numbers by more than 50% in six months
- Reduced energy costs significantly

Oracle's Cloud Computing Strategy

Deliver systems and software to build <u>public</u> and <u>private</u> clouds

Oracle ExaLogic and Oracle Exadata for laaS

Oracle Fusion Middleware and Oracle Database for PaaS

Oracle Fusion Applications for SaaS

FUSION APPLICATIONS

Ensure that cloud computing is <u>fully enterprise grade</u>

Highly efficient, performing, available, scalable and secure infrastructure

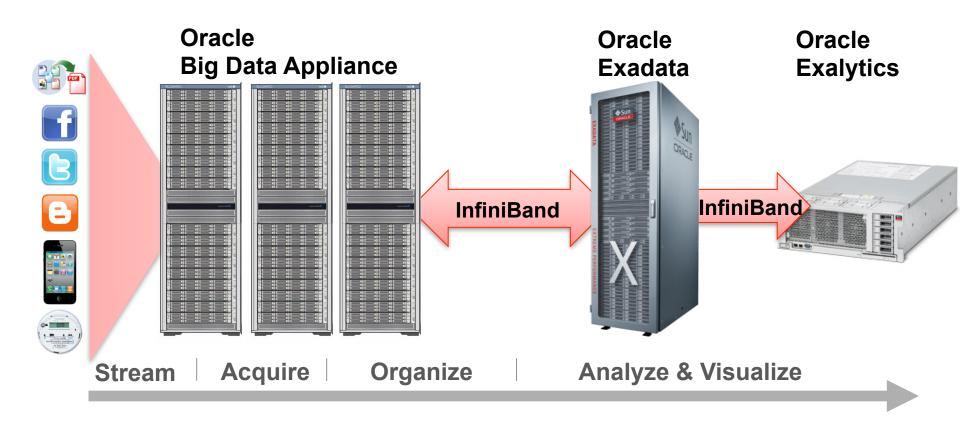
Complete, integrated, and standards-based development platfor

Modern set of enterprise applications, including social and mobile

Provide flexible consumption choices

Private cloud, "as-a-Service" from Oracle Partners or Oracle directly

Flexibility to move applications between these choices


Oracle Big Data Appliance Software

- Oracle Linux
- Oracle Java VM
- Apache Hadoop Distribution
- Oracle R Enterprise Distribution
- NoSQL Database Enterprise Edition

Big Data Appliance

Usage Model – Rapid Analysis of Unstructured Data

Why build a Big Data / Hadoop Appliance?

Time to Build?
Required Expertise?
Cost and Difficulty Maintaining?

Big Data Appliance

Cluster of industry standard servers for Hadoop and NoSQL Database

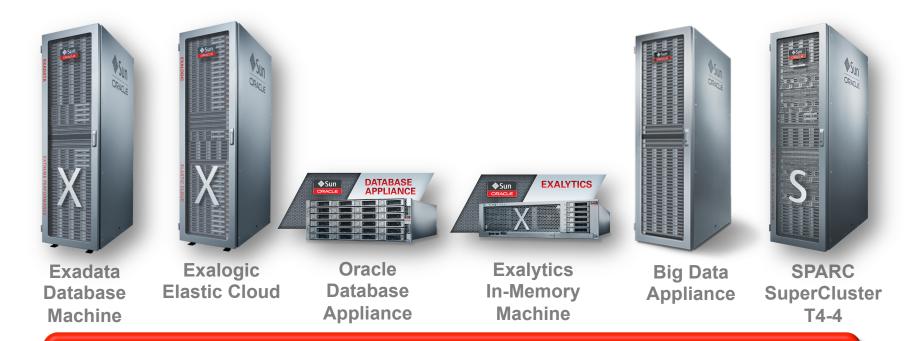
Focus on Scalability and Availability at low cost

InfiniBand Network

- Redundant 40Gb/s switches
- IB connectivity to Exadata

10GigE Network

- 8 10GigE ports
- Datacenter connectivity


Compute and Storage

- 18 High-performance x86 servers acting as Hadoop nodes
- Sun X4270 M2 servers

- 24 TB Capacity per node
- 2 6-core CPUs per node
- Hadoop triple replication
- NoSQL Database triple replication

Oracle Engineered Systems

Oracle Engineered Systems share the following characteristics in common:

- Expedited time to value
- Easier to manage and upgrade
- Lower cost of ownership

- Reduced change mgmt risk
- One-stop support
- Extreme performance

ORACLE

oracle.com/cloud

www.facebook.com/OracleCloudComputing

@OracleCloudZone Hashtag: #oraclecloud

Hardware and Software

ORACLE°

Engineered to Work Together