Selective Genotyping and Cross-Validation Strategies in Genomic Selection

Guilherme J. M. Rosa

Department of Animal Sciences Department of Biostatistics & Medical Informatics

Development of Efficient Design and Statistical Analysis Strategies for Genome-wide Association Studies in Livestock

Hatch Project No: WIS01433, Accession No: 0218979 Period: 10/01/2009-09/30/2013, Report: Year 2 of 4

⇒ Specific Questions

- Assess alternative cross-validation designs
- Effect of selective genotyping in genomic selection

Accuracy of genome enabled prediction in dairy cattle and wheat populations using different cross-validation designs

M. Angeles Pérez-Cabal¹, Ana I. Vazquez², Daniel Gianola³, Guilherme J. M. Rosa³, and Kent A. Weigel³

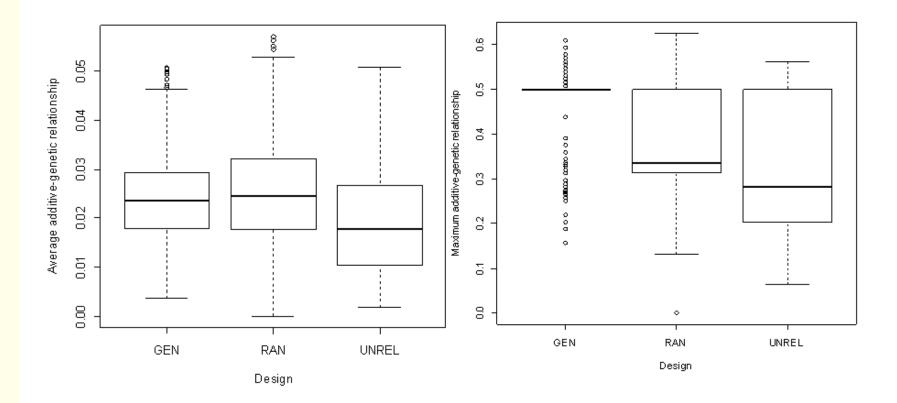
¹ University of Madrid, and Polytechnic University of Madrid, Spain
² University of Alabama-Birmingham, AL, USA
³ University of Wisconsin-Madison, WI, USA

Introduction

- Genome-enabled prediction: Estimation of BV (breeding), or producing ability (management), or yet-to-be phenotypes (personalized medicine)
- Model fit: Bias-variance tradeoff (Cross-validation)
- Cross-validation: Training-testing partition (Legarra et al. 2008; Harbier 2007, 2010; Luan et al. 2009)
- Objective: To assess the importance of genetic relatedness on accuracy of genome-enabled predictions using two distinct populations, and to compare alternative cross-validation strategies

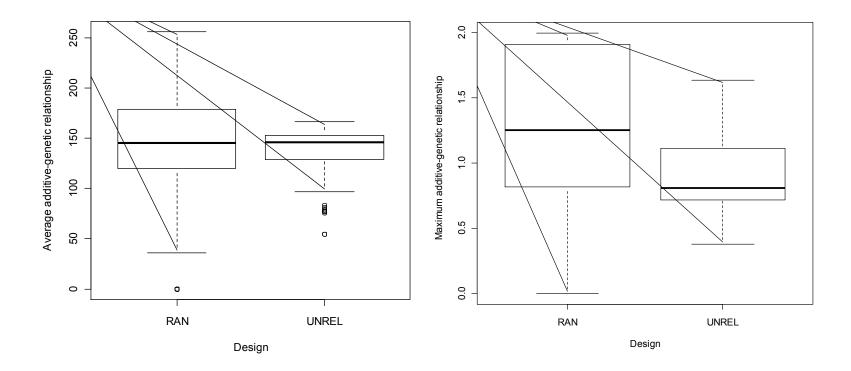
Two populations:

Wheat: grain yield; 599 lines (CIMMYT) with 1,279 SNPs after editing


Dairy cattle: sire PTA for protein yield and somatic cell score; 4,703 sires with 32,518 SNPs after editing

Three CV strategies:

RAN: random split for training and test setsGEN: split by generation: older individuals in trainingREL: two sets of less related animals


 Methods: Bayesian LASSO; prediction accuracy measured by correlation between genomic predictions and PTA (dairy cattle) or phenotype (wheat) in the testing sets

Box plots of average and maximum additive-genetic relationships between training and testing set animals for the GEN, RAN, and UNREL designs with the cattle data.

Box plots of average and maximum additive-genetic relationships between training and testing set lines for the RAN, and UNREL designs with the wheat data.

Results

Prediction accuracy for protein yield (dairy cattle) and grain yield (wheat) for the GEN, RAN, and UNREL training-testing designs.

Population	GEN	RAN	REL
Dairy cattle	0.71	0.82	0.81
(Protein yield)			
Wheat		0.46	0.38
(Grain yield)			

Concluding Remarks

- Different CV strategies resulted in somewhat different predictive abilities
- Overall, slightly higher accuracy levels with higher genetic relationships between training and testing sets, especially for low heritability traits.
- General advice: CV should mimic the manner in which genomic predictions will be used
- Alternative, multiple CV layouts

Comparison of selective genotyping strategies for prediction of breeding values in a population undergoing selection

A. A. Boligon¹, N. Long², L. G. Albuquerque¹, K. A. Weigel³, D. Gianola³ and G. J. M. Rosa³

¹ Sao Paulo State University (UNESP), SP, Brazil
² Duke University, Durham, NC, USA
³ University of Wisconsin-Madison, WI, USA

Introduction

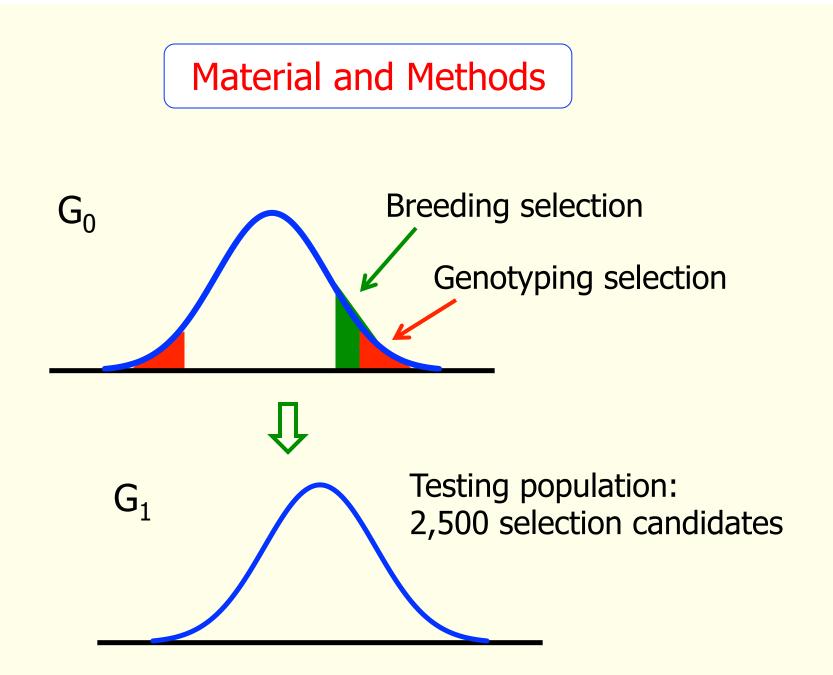
- Genomic selection: Genome-enabled prediction of breeding values
- Genotyping cost: Genotype subset of animals
- Effect of prediction accuracy?
- Objective: To evaluate the quality of GEBV for candidates to selection based on different strategies of selective genotyping of a population undergoing selection, with different selection intensities

Population/Generations

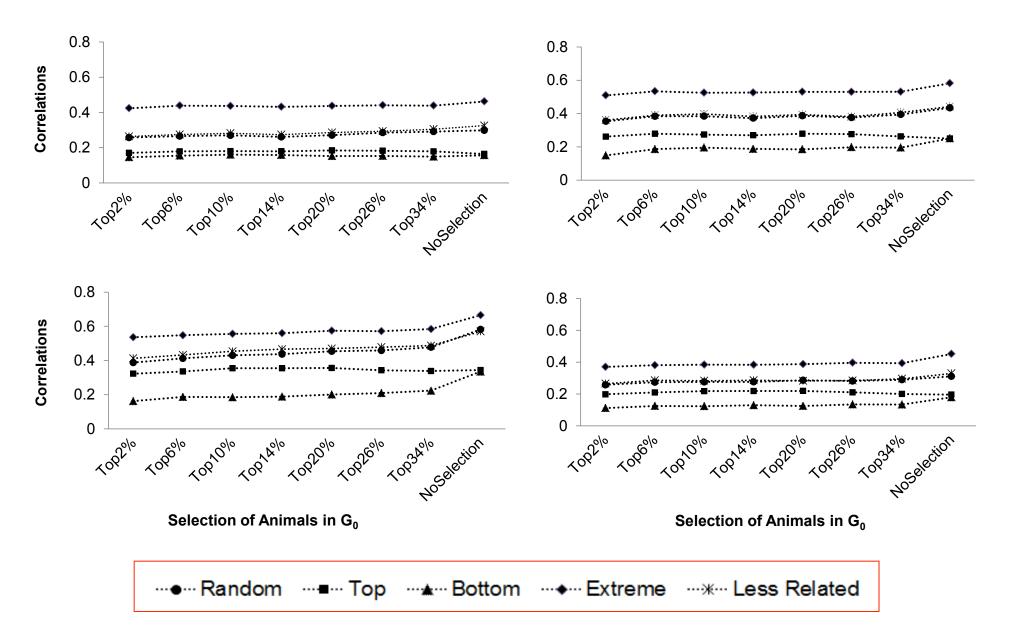
Ē

ns briur	t ₁ : 100 animals	Selection intensities		
uilil	(50 males + 50 females)	%	#	
5,000 generations itation-drift equilibr		2	50	
	Random mating	6	150	
		10	250	
	t ₅₀₀₀ : 100 animals	14	350	
(mu	Factorial mating	20	500	
	G _{0:} 2,500 animals	26	650	
	Directional selection	34	850	
	G ₁ : 2,500 animals	100	2,500	

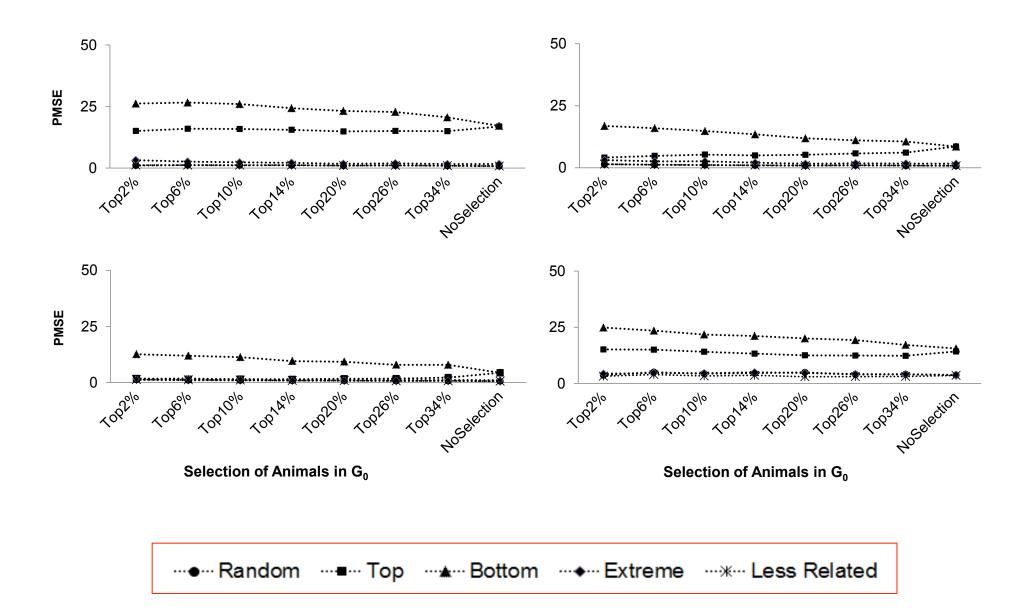
Markers and Genetics Effects


- Genome: 10 chromosomes with 100 cM each
- Loci: 302 bialellic loci (202 markers + 100 QTL) in each chromosome

 $M_1 - M_2 - Q_1 - M_3 - M_4 - ... - M_{199} - M_{200} - Q_{100} - M_{201} - M_{202}$


- Mutation rates: QTL 2.5 x 10⁻⁵, Markers 2.5 x 10⁻³
- QTL effects: Normally distributed
- Heritability: h² = 0.10, 0.25 and 0.50

Analysis


- Training population: 500 genotyped animals in G₀
- Selective genotyping strategies: Random, Top, Bottom, Extreme, Less related
- Testing population: Generation G₁
- Model: Bayesian LASSO
- Performance: Correlations between GEBV and TBV (accuracy), and Predictive mean square error

Prediction accuracies (correlations between GEBV and TBV)

Predictive mean squared error (PMSE)

Number and percentage of coincidence animals

	No selection	Top2%	Торб%	Top10%	Top14%	Top20%	Top26%	Top34%		
10% best animals (250 animals)										
Random	28% (71)	25% (62)	24% (61)	26% (64)	24% (61)	25% (63)	24% (60)	25% (62)		
Тор	21% (52)	24% (59)	22% (55)	22% (56)	22% (55)	22% (55)	22% (56)	22% (54)		
Bottom	20% (49)	13% (33)	14% (36)	16% (39)	15% (38)	15% (37)	15% (37)	16% (39)		
Extreme	38% (94)	33% (82)	34% (84)	34% (86)	34% (84)	34% (85)	35% (87)	38% (95)		
Less Related	29% (73)	22% (54)	26% (64)	26% (64)	25% (62)	26% (65)	26% (65)	27% (67)		
25% best animals (625 animals)										
Random	45% (279)	37% (234)	41% (258)	42% (263)	41% (256)	42% (262)	41% (259)	42% (262)		
Тор	36% (228)	36% (226)	39% (242)	38% (235)	37% (230)	38% (238)	38% (236)	38% (235)		
Bottom	34% (215)	31% (191)	31% (194)	32% (202)	32% (200)	31% (196)	32% (199)	32% (201)		
Extreme	51% (317)	49% (304)	50% (310)	49% (306)	49% (309)	50% (311)	50% (313)	50% (312)		
Less Related	45% (279)	39% (246)	42% (260)	42% (264)	41% (257)	42% (265)	42% (261)	43% (267)		
50% best animals (1250 animals)										
Random	64% (803)	60% (750)	62% (774)	63% (785)	62% (777)	63% (785)	62% (775)	62% (780)		
Тор	57% (718)	58% (726)	59% (741)	59% (734)	58% (729)	59% (742)	59% (733)	58% (730)		
Bottom	58% (726)	55% (686)	56% (695)	56% (701)	53% (669)	56% (699)	56% (702)	56% (699)		
Extreme	70% (871)	67% (839)	68% (847)	68% (845)	68% (846)	68% (851)	68% (846)	68% (847)		
Less Related	64% (804)	61% (769)	58% (723)	63% (789)	62% (780)	63% (785)	62% (778)	62% (777)		

Concluding Remarks

- Lowest accuracies with the Bottom strategy
- Random, Extreme and Less Related strategies: accuracies improved with lowest selection intensity
- These three strategies were better than the Top approach
- Extreme, Random and Less Related strategies showed lower prediction mean squared errors (PMSE), followed by the Top and then by the Bottom methods
- Overall, the Extreme genotyping strategy led to the best predictive ability