W236 The UniProt-Gene Ontology Annotation (UniProt-GOA) Database: Central Resource for Multi-Species GO Annotation

Date: Sunday, January 15, 2012
Time: 11:00 AM
Room: California
Rachael Huntley , EMBL-EBI, Cambs., United Kingdom
The Gene Ontology (GO) is a well-established, structured vocabulary used in the functional annotation of gene products. GO terms are used to replace the multiple nomenclatures used by scientific databases that can hamper data integration. Currently, GO consists of more than 35,000 terms describing the molecular function, biological process and subcellular location of a gene product in a generic cell. The UniProt-Gene Ontology Annotation (UniProt-GOA) database1 provides high-quality manual and electronic GO annotations to proteins within UniProt. By annotating well-studied proteins with GO terms and transferring this knowledge to less well-studied and novel proteins that are highly similar, we offer a valuable contribution to the understanding of all proteomes. UniProt-GOA provides annotated entries for over 387,000 species and is the largest and most comprehensive open-source contributor of annotations to the GO Consortium annotation effort. Annotation files for various proteomes are released each month, including human, mouse, rat, zebrafish, cow, chicken, dog, pig, Arabidopsis and Dictyostelium, as well as a file for the multiple species within UniProt. The UniProt-GOA dataset can be queried through our user-friendly QuickGO browser2 or downloaded in a parsable format via the EBI3 and GO Consortium FTP4 sites. The UniProt-GOA dataset has increasingly been integrated into tools that aid in the analysis of large datasets resulting from high-throughput experiments thus assisting researchers in biological interpretation of their results. The annotations produced by UniProt-GOA are additionally cross-referenced in databases such as Ensembl and NCBI Entrez Gene.

1 http://www.ebi.ac.uk/GOA

2 http://www.ebi.ac.uk/QuickGO

3 ftp://ftp.ebi.ac.uk/pub/databases/GO/goa

4 ftp://ftp.geneontology.org/pub/go/gene-associations