Sequencing and assembly of the largest and most complex genome to date

The Norway spruce

(Picea abies)

Björn Nystedt, SciLifeLab, Sweden
The Spruce Genome Project
The Spruce Genome Team

UPSC
Rishikesh Bhalerao
Simon Birve
Ulrika Egertsdotter
Ioana Gaboreanu
Rosario Garcia-Gil
Per Gardeström
Thomas Hiltonen
Torgeir Hvidsten
Pär Ingvarsson
Stefan Jansson
Olivier Keech
Susanne Larsson
Chanaka Mannapperuma
Ove Nilsson
Douglas Scofield
Nathaniel Street
Björn Sundberg
Stacey Lee Thompson
Harry Wu

SAB
Kerstin Lindblad-Toh
John MacKay
Outi Savolainen
Detlef Weigel

VIB Gent
Yves Van de Peer
Yao-Cheng Lin

IGA Udine
Michele Morgante
Francesco Vezzi
Ricardo Vicedomini
Andrea Zuccolo

CHORI Oakland
Pieter de Jong
Maxim Koriabine

Skogforsk
Bengt Andersson
Bo Karlsson

SNIC Supercomputers
Uppmax/PDC/NSC/HPC2N

SNISS national infrastructure

CLCbio
Lucigen
In particular for this talk..

Data analysis
- Douglas Scofield
- Andrey Alexeyenko
- Anna Wetterbom
- Ellen Sherwood
- Nat Street
- Yao-Cheng Lin

Fosmids
- Pieter dJ (CHORI)
- Lucigen

Sequencing
- SciLifeLab Genomics Platform
- PacBio

Scaffolding (BESST)
- Kristoffer Sahlin

Assembly software development
- CLCbio

Computing and storage
- Uppmax (30 TB disc and counting..)
- SciLifeLab (2TB RAM)

<table>
<thead>
<tr>
<th>SciLifeLab</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5 HiSeq</td>
<td></td>
</tr>
<tr>
<td>5 SOLiD</td>
<td>2 IonTorrent</td>
</tr>
<tr>
<td>3 454</td>
<td>1 MiSeq</td>
</tr>
</tbody>
</table>
Genome size

- Arabidopsis: 0.12 Gbp
- Populus: 0.45 Gbp
- Humans: 3 Gbp

The Spruce Genome Project
Genome size

- Arabidopsis (0.12 Gbp)
- Populus (0.45 Gbp)
- Humans (3 Gbp)
- Spruce (20 Gbp)

The Spruce Genome Project
Spruce as a new model species

Economically important tree

- Tools for breeding for tree productivity, quality, health
- Tools for cellulose and wood fibre modification (new materials)
- Tools for tree-based biorefineries
Science of conifers

• Evolution: The last major plant group without a sequenced genome

• Ecology: Dominant members of boreal forests

• Biology: Unique biological features
The Spruce Genome

Challenges

• 19.6 Gbp genome (40% GC)
• 12 x 2 evenly sized chromosomes (Chromosome sorting very difficult)
• 75% of the genome consists of transposable elements
• 3% consists of genes and pseudo-genes (Large gene families and many pseudo-genes)

What do we do with all the data?

1. **Raw data**
 - ~5 Tbp
 - rNA, Fastx, FastQC

2. **Quality filtered data**
 - BWA, rNA, FastQC

3. **Remove phiX (+ chloroplast)**
 - CLC, (Velvet, Newbler)

4. **Merging of assemblies**
 - GAM [custom tool]

5. **Scaffolding**
 - BESST [custom tool]

6. **Repeat annotation**
 - RepeatMasker, Repeat Scout, BLAST, custom tools

7. **Assembly validation**
 - FRC [custom toolkit]

8. **Gene annotation**
 - EUGene

9. **Transcriptome sequencing**

Aims (Phase 1)
- Public genomic resource
- Genes and gene families
- Repeats
- Evolutionary insight
The haploid megagametophyte (seed nutrient tissue) is haploid from the mother.

~600 ng DNA

WGS (haploid)
PE (150bp, 300bp, 650bp)

Status
20X

The Spruce Genome Project
Assembly stats, 20X haploid

- 30% in contigs > 1 kbp
- 8% in contigs > 5 kbp
- 1% in contigs > 10 kbp
- NG50: 204 bp

BUT...
Low amount of input DNA leads to library depletion:
=> True coverage is only 10X (50% PCR redundancy)
WGS (diploid)

Needles (normal diploid tissue)
Amount of DNA is not a limitation

Assembly stats, 50X diploid
- 44% (30%) in contigs >1 kbp
- 12% (8%) in contigs >5 kbp
- 3% (1%) in contigs >10 kbp
- NG50: 757 bp (204bp)

WGS (diploid) Status
454 (SE) 1.5X
PE (150bp, 300bp, 650bp) 50X

~10 billion reads
CLCbio: 5 days (800 GB RAM)
Why 50% expected coverage?

a)

b)

The Spruce Genome Project
Scaffolding with paired reads

Reasons for contig breaks:
- Repeats
- Local lack of coverage
- Polymorphisms (only diploid)

In-house scaffolder, BESST
“quality over quantity”
2.5 kbp jumping lib proof of principle:
Scaffolding the spruce chloroplast

1 run 454 assembled with Newbler => 9 chloroplast contigs
Mapping 1% of 1 lane MP data => 1 circular scaffold

Detected 1 translocated inversion compared to *Picea sitchensis*
38 of 39 *Cycas* mitochondrial genes found in this set

Potential mito contigs sum up to 5 Mbp (!)
(The *Cycasmito* gene contigs alone sum up 1.4 Mbp)

Much longer contigs than nuclear DNA (less repeats?)
N50 - contigs: 50 kbp
- scaffolds: 289 kbp
Do we have the genes yet?

A complete gene structure (2.4 kbp)

Map 27,000 FL-cDNA:s (White spruce) to the WGS

>30% contained in a single contig
(60% well covered but split on multiple contigs)
Long introns

Fasciclin-like arabinogalactan protein (putative cell adhesion)

8 kbp TE intron insertion

Conserved protein sequence
The Spruce Genome Project

Fosmid pool strategy

Genome

Fosmid library

Pool

~1000 fosmids/pool (~40 Mbp)
8 pools/HiSeq lane => 60X fosmid coverage
500 pools (~8 flowcells) => 1X genome coverage

500 assemblies á 40 Mbp

Merge all assemblies (including WGS)
20 kbp contigs:
3 pools of 1000 fosmids (<1% of the genome) enough to beat WGS...

The Spruce Genome Project
Fosmid pool size (scaffolded)

- 300 bp lib (pool)
- 650 bp lib (WGS)
- 2.5 kbp lib (WGS)
Assembly/scaffolding validation

Validation of pool assemblies by individual fosmid assemblies

Pick individual fosmid from known pool → PacBio 454 (Illumina) → Assembly (Finishing) → Benchmark pool

A single fosmid from the fp100 pool (PacBio: 2 contigs, 34kbp)

The corresponding scaffold from the same pool (CLCbio + BESST: 5 contigs in 1 scaffold, 38kbp)
Fosmid pools: Scaling up

Fosmid pools
- Pool size trials
 - First 500 pools (1X)
 - Additional 1500 pools (3X)

Status
- 5 pools done
- 300 libs done (20% analysed)
- Production in progress

Production mode pools not as great as the trials, but still much better than the WGS

Counts: 700 - 1300 fosmids per pool
Coverage: ~30X (aimed for 75X)

<table>
<thead>
<tr>
<th>Fosmid pools</th>
<th>Contig sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pool size</td>
<td>>1kbp</td>
</tr>
<tr>
<td></td>
<td>>5kbp</td>
</tr>
<tr>
<td></td>
<td>>10kbp</td>
</tr>
<tr>
<td></td>
<td>>20kbp</td>
</tr>
</tbody>
</table>

Distribution of % recovered by contig sizes

- Trial pool fp1000
- WGS
What’s next?

- Complete first 500 fosmid pools (Feb 2012)
- More paired data (10 kbp, fosmid ends)
- Assembly merging
- More individual fosmids for benchmarking
- Assembly error detection methods (paired reads, independent datasets)
Tuesday, Lucigen workshop
14.10 Björn Nystedt

“Fosmid pool sequencing of the 20 Gbp genome of Norway spruce (Picea abies)”

Thank you!
Scaffolding of WGS

WGS (haploid)
- PE (150bp, 300bp, 650bp)

WGS (diploid)
- 454 (SE)
- PE (150bp, 300bp, 650bp)
- MP (2.5 kbp)
- MP (10kbp)
- Fosmid ends

Status
- (20X)
- 1.5X
- 55X
- 40X span
- Trials in progress
- Trials in progress

Assembly stats, 15X haploid scaffolded
- 31 % (30%) in contigs>1 kbp
- 20 % (8%) in contigs>5 kbp
- 14 % (1%) in contigs > 10 kbp