

Sequencing the Snake Venom Transcriptome for its Applications in Biomedicine

Ana Conesa
Genomics of Gene Expression Lab
Centro de Investigación Príncipe Felipe
Valencia
aconesa@cipf.es

Snake envenomation

Global evaluation of snakebites [8]

Landmasses	Population (x10 ⁶) Total number of bites		No. of envenomations	No. of fatalities
Europe	730	25,000	8,000	30
Middle East	160	20,000	15,000	100
USA and Canada	310	45,000	6,500	15
Central and South America	400	300,000	150,000	5,000
Africa	760	1,000,000	500,000	20,000
Asia	3,500	4,000,000	2,000,000	100,000
Oceania	20*	10,000	3,000	200
Total	5,840	5,400,000	2,682,500	125,345

^{*}Population at risk

Snake envenomation

Symptoms snake envenomation •Flaccid Paralysis

- Systemic myolosis
- •Coagulophacy
- Cardiotoxycity
- Local tissue injury

Biomedical interest of snake venom toxins

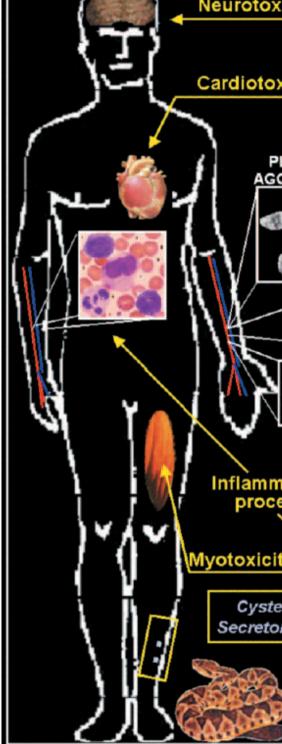
Anti-venoms development:

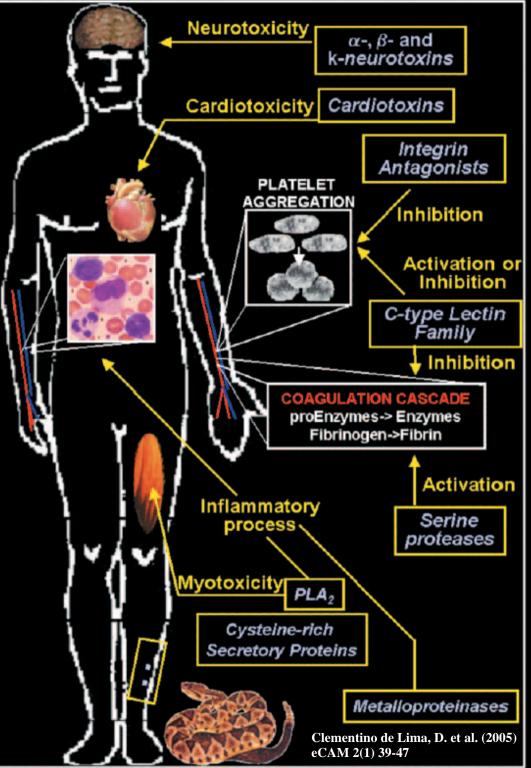
Venoms are protein cocktails

Biomedical research:

Molecular studies on venom targets

Pharmaceutical:


Treatment of diseases caused by target alterations



funda cod to depayable Hardrenson Segreps, and take

Fuerbe Calulation To miss our title. Asptolar pageteixture? It Planting mander blancare

formir Legaciyaki yakina

Service Calcinting Parelle conflict Angle spraphics passing shale Parelle control Canadam

fumilie Calufathian Harris a startifica - Algebo malaratur Harris a carrier - Grandi a carrier o

Frenche Calebratea Facility and the Apality of the Studiose

Parely strettier Cabab same The relief course in the poor

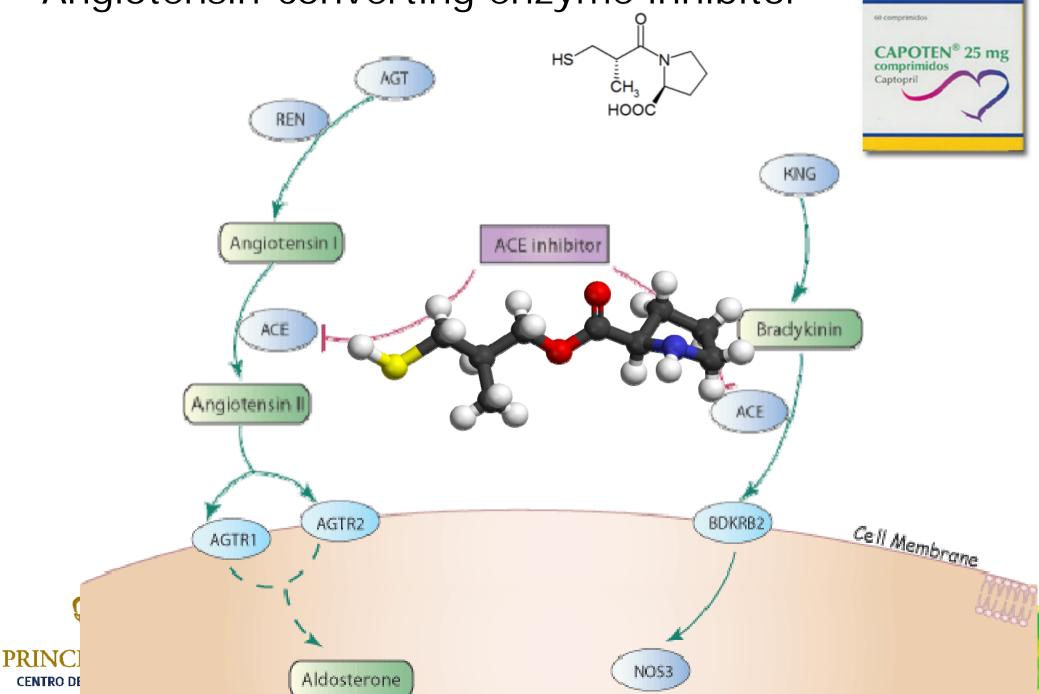
Fermilia Calebration Harrison consilions Philosophic geographics

Herebook hard too daystay his almost the technical base

Friedle Coldyddor Final and a silicon Manchestry and another hand a second of C and false

Formilio Coldulation Figure 1 and the Apple Smoths

Foreite Coldentine Standard and Standard Adel



Parties and a Demoches and

Ferreito Coledation

Photos cod on Makening Indian's Photos com Cardina

CAPTOPRIL (Bothrops jararaca): Angiotensin-converting enzyme inhibitor

Bristol-Myers Souibb, S.L.

Review

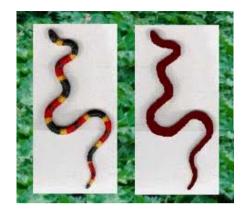
Biomedical applications

Snake venom components and their applications in biomedicine

D. C. I. Koh., A. Armugam and K. Jeyaseelan*

Cell. Mol. Life Sci. 63 (2006) 3030-3041

Table 3. Drugs/clinical	diagnostic kits	from snake	venoms.
-------------------------	-----------------	------------	---------


Table 3. Drugs/clinical diag	gnostic kits from snake venoms.	
Drug/trade name®	Target and function/treatment	Source
Captopril; enalapril	ACE inhibitor/high blood pressure	Bothrops jaracusa (Brazilian arrowhead viper)
Integrilin (eptifibatide)	platelet aggregation inhibitor/acute coronary syndrome	Sisturus miliarus barbouri (south-eastern pigmy rattlesnake)
Aggrastat (tirofiban)	GPIIb-IIIa inhibitor/myocardial infarct, refractory ischaemia	Echis carinatus (African saw-scaled viper)
Ancrod (Viprinex)	Fibrinogen inhibitor/stroke	Agkistrodon rhodostoma (Malayan pit viper)
Defibrase	thrombin and protrhombin inhibitor/acute cerebral infarction, unspecific angina pectoris	Bothrops moojeni
Hemocoagulase	thrombin-like effect and thromboplastin activity/ prevention and treatment of haemorrhage	Bothrops atrox
Protac/protein C activator	protein C activator/clinical diagnosis of haemostatic disorder	Agkistrodon contortix contortix (American copperhead)
Reptilase	diagnosis of blood coagulation disorder	Bothrops jaraca (South American lance adder)
Ecarin	prothrombin activator/diagnostic	E. carinatus
Exanta; ximelagatran	blood thinner/anti-coagulant, thrombin inhibitor	Cobra

Costa Rica Crotaline snakes

Bothrops asper (Pac) Bothrops asper (Atl) 1.5-2 m, "terciopelo"

Bothriechis lateralis Bothriechis schlegelii 70-100 cm, tree snakes

Atropoides picadoi Atropoides mexicanus "mano de piedra", vivipar

Cerrophidion godmani viviper

Crotalus simus rattlesnake

Available information

- Extensive Proteome studies
- No genome available
- Presence in GenBank: 37000 sequences, 13000 of which are mitochondrial

Snake Venomics of the Lancehead Pitviper Bothrops asper. Geographic, Individual, and Ontogenetic Variations

Alberto Alape-Girón, †, Libia Sanz, José Escolano, Marietta Flores-Díaz, Marvin Madrigal, † Mahmood Sasa,† and Juan J. Calvete*,\$

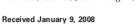
Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica, Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica, and Instituto de Biomedicina de Valencia, C.S.I.C., Jaume Roig 11, 46010 Valencia, Spain

Received April 30, 2008

Snake Venomics of Central American Pitvipers: Clues for Rationalizing the Distinct Envenomation Profiles of Atropoides nummifer and Atropoides picadoi

Yamileth Angulo,† José Escolano,‡ Bruno Lomonte,† José María Gutiérrez,† Libia Sanz,‡ and Juan J. Calvete*,‡

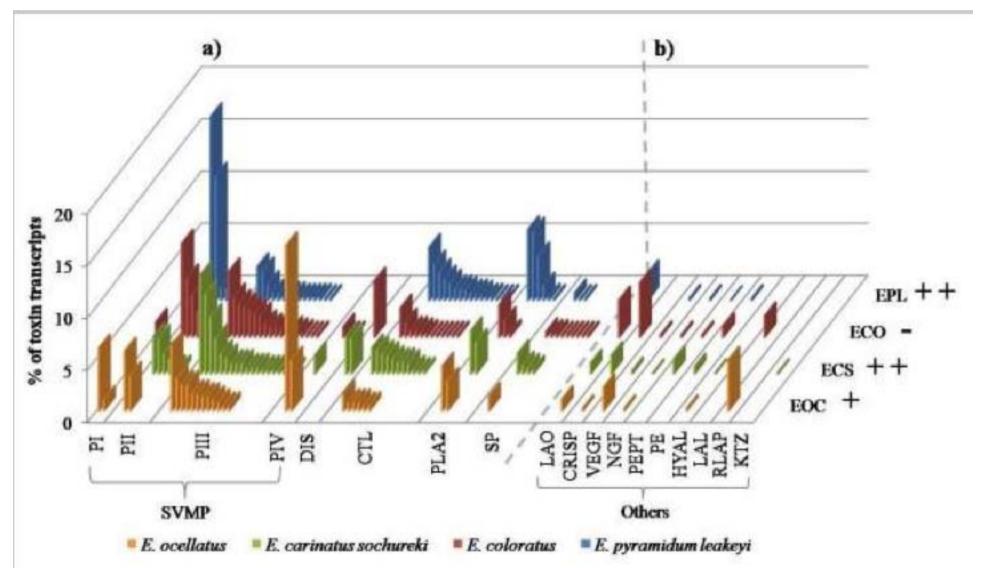
Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica, and Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Jaume Roig 11, 46010 Valencia, Spain


Received September 20, 2007: Accepted October 29, 2007

Snake Venomics and Antivenomics of the Arboreal Neotropical Pitvipers Bothriechis lateralis and Bothriechis schlegelii

Bruno Lomonte, José Escolano, Julián Fernández, Libia Sanz, Yamileth Angulo, José María Gutiérrez,† and Juan J. Calvete*,‡

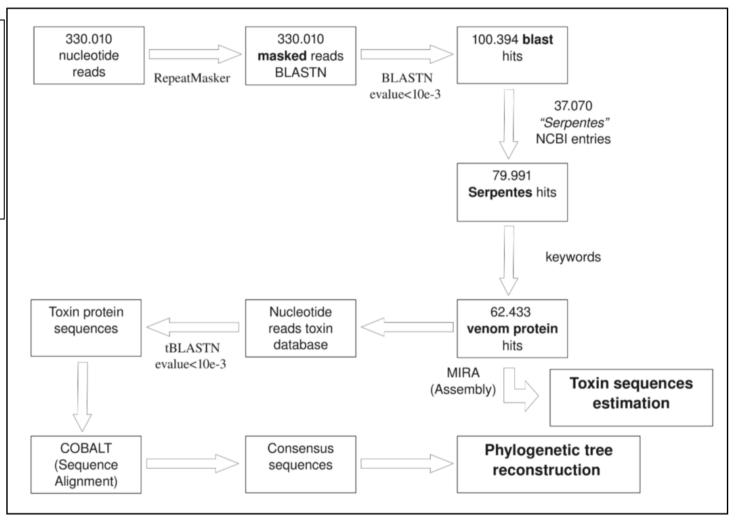
Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica, and Instituto de Biomedicina de Valencia, C.S.I.C., Jaume Roig 11, 46010 Valencia, Spain



Complexity venom gland composition

Casewell et al., BMC Genomics 2009

Transcriptomics analysis snake venom


Figure 1

8 snake venom transcriptomes

Multiplexed libraries

454 sequencing stats

About 70% of the snake affiliated transcripts are toxins

Snake species	Total reads	Mean length (nt)	BLAST hits	(% of total hits)	Serpentes hits	(% of total hits)	Venom protein	(% Serpentes hits)
C. simus	22389	193.6	3608	(16.1)	2320	(64.3)	1327	(57.2)
B. asper (Car)	123485	185.6	43818	(35.5)	35655	(81.4)	28220	(79.1)
B. asper (Pac)	16076	184.8	2848	(17.7)	2078	(72.9)	1378	(66.3)
C. godmani	44843	182.1	13743	(30.7)	11252	(81.9)	9824	(87.3)
A. picadoi	31027	188.8	13295	(42.8)	11350	(85.4)	9951	(87.7)
A. mexicanus	27080	192.1	6418	(23.7)	4070	(63.4)	3109	(76.4)
B. schlegelii	33276	191.5	6826	(20.5)	4525	(66.2)	2893	(63.8)
B. lateralis	31833	186.1	9838	(30.9)	7970	(81.0)	5731	(71.9)
TOTAL	330010	187.3	100394	(30.4)	79991	(79.7)	62433	(78.0)

High abundance of repetitive elements

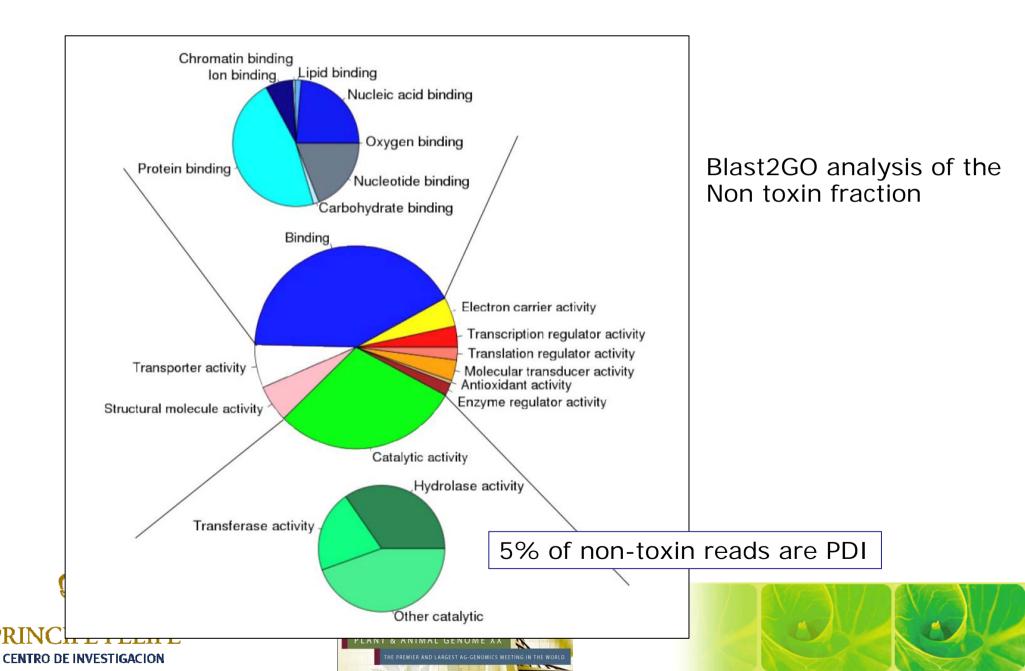
5% Repetitive Elements

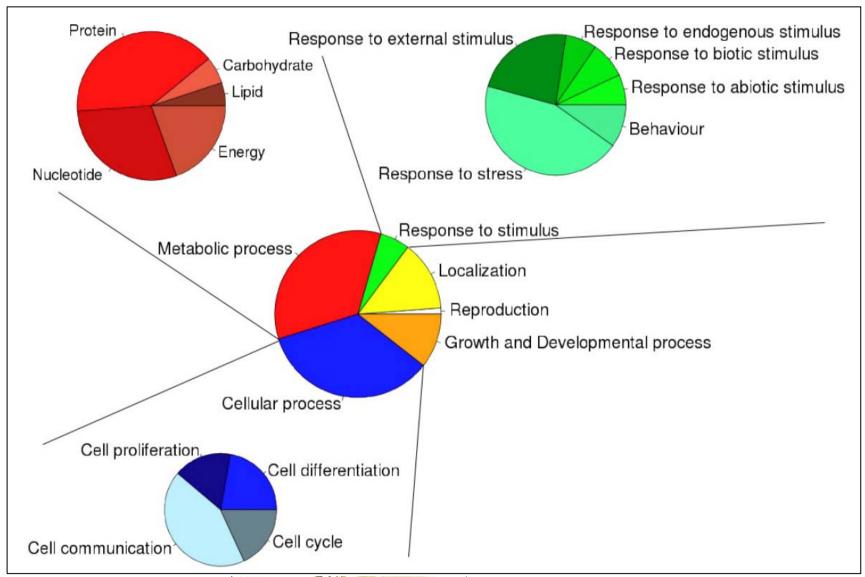
number of elements

length occupied (nucleotides)

Retroelements	28609	3312010
SINEs:	816	85079
Penelope	1263	137377
<u>LINEs</u> :	22125	2709376
CRE/SLACS	0	0
L2/CR1/Rex	6322	761398
R1/LOA/Jockey	2	170
R2/R4/NeSL	295	34226
RTE/Bov-B	13880	1742940
L1/CIN4	363	33265
LTR elements:	5668	517555
BEL/Pao	0	0
Ty1/Copia	19	2164
Gypsy/DIRS1	1102	142726
Retroviral	4461	363048

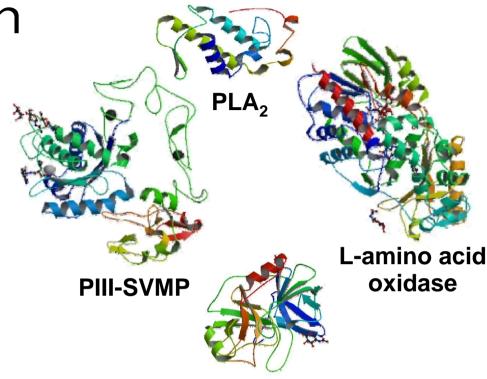
DNA transposons	2749	238354
hobo-Activator	1390	96605
Tc1-IS630-Pogo	630	97585
En-Spm	59	3109
MuDR-IS905	5	350


Many retrotransposons within toxin protein genes



Functional annotation non-toxin proteins

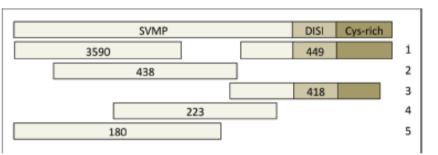
Functional annotation non-toxin proteins



Analysis Toxin fraction

	Number of reads	% of total venom protein entries
Bradykinin potentiating peptide (BPP)	9231	14.8
Cysteine-Rich Secretoy Peptide (CRISP)	1066	1.7
C-type lectin-like protein (CTL)	1039	1.6
Growth factor (GF)	789	1.2
L-amino acid oxidase (LAO)	2535	4.0
Phospholipase A ₂ (PLA ₂)	7065	11.3
Metalloproteinase (SVMP)	26646	42.7
Serine Proteinase (SP)	10019	16.0
5'-nucleotidase (5'-NTase)	374	0.6
Phosphodiesterase (PDE)	119	0.2
Glutaminyl cyclase (GC)	170	0.3
Cobra Venom Factor (CVF)	8	0.01
Crotamine (CRO)	22	0.04
Sarafotoxin (SARA)	3	0.005
Waprin (WAP)	26	0.04
Kunitz-type inhibitor (KUN)	21	0.03
Kazal-type inhibitor (KAZ)	21	0.03
Hyaluronidase (HYA)	24	0.04
Ohanin (OHA)	2412	3.9
Three-Finger Toxin (3FTx)	845	1.3

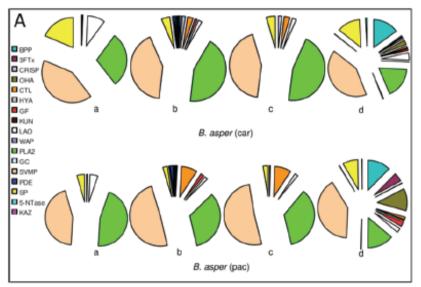
Serine proteinase

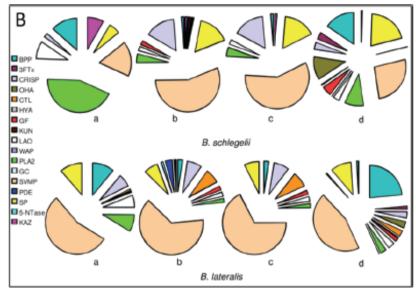

Low expression proteins, never indentified In the venom of these snakes.

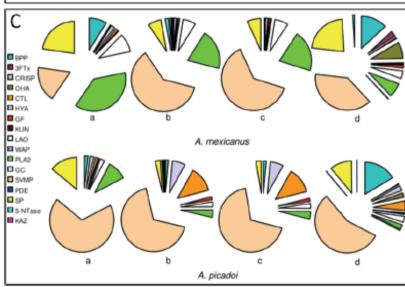
Most reads are at 3' UTR regions

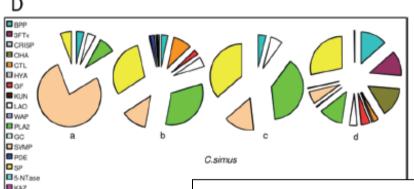
Pseudogenes? Residual genes of venome

Estimation number of toxin genes

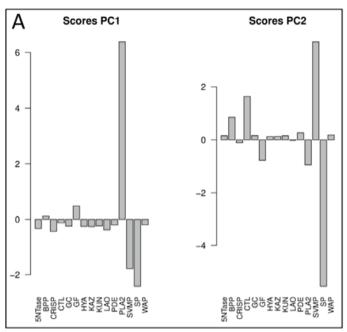


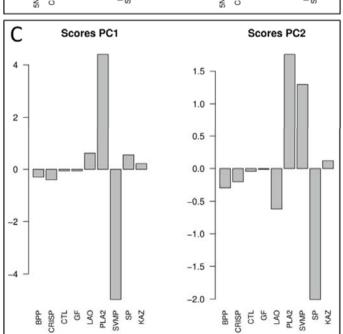

Reference-guided alignment of contigs + quantification of topologically equivalent fragments

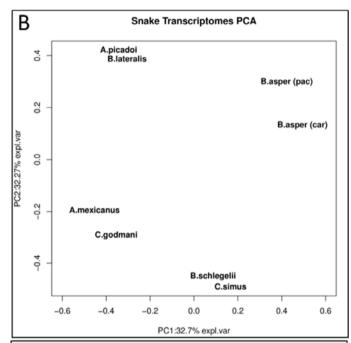

	C.simus	B.asper(Car)	B.asper(Pac)	C.godmani	A.picadoi	A.mexicanus	B.schlegelii	B.laterali
BPP	1	1	1	2	1	1	4	2
CRISP	0	2	1	2	4	1	2	1
CTL	2	5	2	3	9	1	0	5
GF	2	5	1	3	3	1	1	1
LAO	3	2	2	4	5	2	3	3
PLA2	3	9	4	4	2	2	1	3
SVMP	9	29	5	19	15	4	14	20
SP	6	15	1	13	7	6	8	11
5'-NTase	<u> 1</u>	3		2	2	2		3
PDE	1	1	1	2	2	0	1	2
GC	1	2	1	1	1	1	0	1
WAP	0	2	0	0	0	0	0	0
HYA	2	2	0	1	1	1	0	1
OHA	0	0	0	0	1	1	0	0
3FTx	1	0	0	0	0	0	0	0
KUN	0	0	0	0	0	0	11	0
KAZ	0	0	0	0	0	0	1	1
TOTAL	32	78	20	56	53	23	37	54
PROTEOME	20	30	27	NA	25-27	25-27	27	29

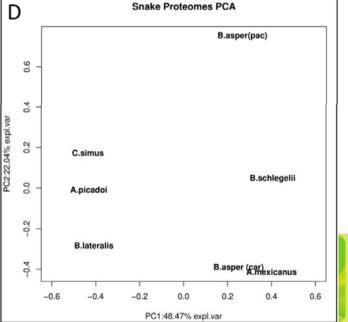

Transcriptome vs. proteome comparison suggests differential translational rates

PLANT & ANIMAL GENOME XX



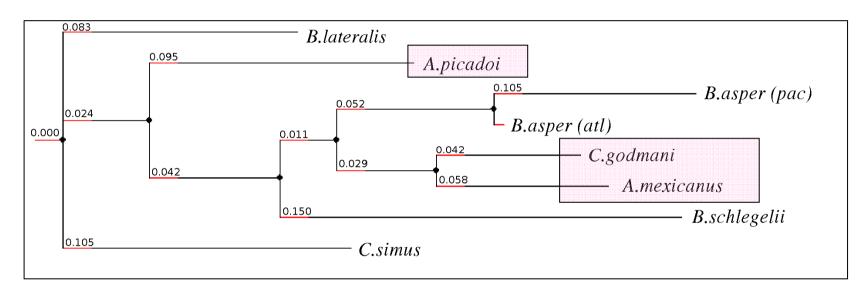

- a) Proteome
- b) Transcriptome
- c) Restricted transcriptome
- d) Proportional transcriptome




10127

PCA snake venom transcriptome vs. proteome





Phylogenetic analysis based on transcriptomics* data

*Based on BPP, LAO, PLA2, SVMP, and SP consensus translated protein sequences

Castoe et al., 2005

Castoe et al., 2006

Angulo et al., 2008:

15% divergence between *A.picadoi and A.mexicanus*

Conclusions

- •Characterization of the Costa Rican snake venoms transcriptomes reveal the diversity of the venom composition. Dissection of venom complexity is a requirement for efficient exploitation of this chemical pool towards biomedical applications.
- •Comparison of transcriptome and proteome profiles suggests additional mechanisms of translational control of snake venoms
- Venom transcriptomics data reveal interesting features on snake speciation and divergence

Acknowledgements

Durban et al. BMC Genomics 2011, 12:259 http://www.biomedcentral.com/1471-2164/12/259

RESEARCH ARTICLE

Open Access

Profiling the venom gland transcriptomes of Costa Rican snakes by 454 pyrosequencing

Jordi Durban¹, Paula Juárez¹, Yamileth Angulo², Bruno Lomonte², Marietta Flores-Diaz², Alberto Alape-Girón^{2,3}, Mahmood Sasa², Libia Sanz¹, José M Gutiérrez², Joaquín Dopazo⁴, Ana Conesa^{4*} and Juan J Calvete^{1*}

