Sperm Mobility: A Quantitative Trait in Poultry

David P. Froman

Department of Animal Sciences
Oregon State University

United States
Department of
Agriculture

National Institute of Food and Agriculture

Data from "Sperm mobility: A primary determinant of fertility in the domestic fowl" by Froman et al. in *Biology of Reproduction* (1999).

Relationship between the *shape* of a VSL distribution and in vitro sperm mobility.

Data from "Sperm mobility phenotype not determined by sperm quality index" by Froman et al. in *Poultry Science* (2003).

Images from "Sperm mobility: Phenotype in roosters determined by mitochondrial function" by Froman and Kirby in *Biology of Reproduction* (2005).

Data from "A proteome-based model for sperm mobility phenotype" by Froman et al. in Journal of Animal Science (2011).

Protein (Gallus gallus)	<i>P</i> -value ¹
Glucose transporter 3	<0.0001
Phosphoglucose isomerase	<0.0001
Phosphofructorkinase	<0.0001
Aldolase	<0.0001
Triose phosphate isomerase	<0.0001
Glyceraldehyde-3-phosphate dehydrogenase	<0.0001
Phosphoglycerate kinase 1	<0.0001
Phosphoglyerate mutase	<0.0001
α-Enolase	<0.0001
β-Enolase	<0.0001
γ-Enolase	0.0263
Pyruvate kinase, muscle	<0.0001
Lactate dehydrogenase, A chain	<0.0001
Lactate dehydrogenase, B chain	<0.0001

¹Between line difference in which expression was up-regulated in the high sperm mobility line.

Hypothesis: mitochondrial failure stems from a set of conditions that affect sperm in a stochastic manner.

Line	Source of roosters ¹	Daily sperm production (x 10 ⁶ sperm / g testis) ²	Sperm concentration within deferent duct (x 10 ⁹ sperm / mL) ²	Deferent duct transit (d) ²
Low	Mode	92 <u>+</u> 8.8	6.5 <u>+</u> 1.23	2.2 <u>+</u> 0.54 ^A
	Upper tail	91 <u>+</u> 6.2	6.3 <u>+</u> 1.18	1.4 <u>+</u> 0.04 ^B
High	Lower tail	95 <u>+</u> 11.7	5.0 <u>+</u> 1.26 ^a	1.2 <u>+</u> 0.60
	Upper tail	91 <u>+</u> 10.5	4.2 <u>+</u> 0.55 ^b	1.1 <u>+</u> 0.44

¹ n = 18 roosters per region per line.

² Each value is a mean <u>+</u> SD.

^{a,b} Different at P < 0.05.

A,B Different at P < 0.0001.

Observed ¹			Predicted		
Line	Combined testicular output (x 10 ⁹ sperm/d)	Deferent duct transit (d)	Mobile sperm (<i>p</i>)	Reproductive tract throughput ² (x 10 ⁹ sperm/d)	Mobile sperm output ³ (x 10 ⁹ sperm/d)
Low	3.9 <u>+</u> 0.55	1.8 <u>+</u> 0.38	0.11 <u>+</u> 0.043	2.2	0.2
High	3.0 <u>+</u> 0.87	1.0 <u>+</u> 0.20	0.66 <u>+</u> 0.097	3.0	2.0

¹ n = 10 roosters from the $\frac{1}{1}$ mode of each line; each value is a mean $\frac{1}{1}$ SD.

² Throughput = testis output ÷ deferent duct transit time.

³ Mobile sperm output = $p \times throughput$.

What happens when lines are crossed?

low line sire x

7 low line damsand7 high line dams

high line sire x

7 low line damsand7 high line dams

A gene-based, quantitative definition for semen quality

NIFA Grant No. 2011-67015-20035

Summary

- Sperm mobility is a primary determinant of fertility
- Sperm mobility is subject to genetic selection
- Semen quality can be defined quantitatively as the number of mobile sperm produced per male per day
- Semen production can be understood in terms of systems biology
- Our long-term goal is predicting male reproductive potential using DNA from chicks at hatch