Drought adaptation in sorghum – associations with nodal root angle and root system architecture

Graeme Hammer, Vijaya Singh, Erik van Oosterom, David Jordan – The University of Queensland

Colleen Hunt, Emma Mace – AgriScience Qld
Outline

1. Dryland crop productivity and water capture - principles
2. What is the water foraging capacity of sorghum root systems?
3. How do sorghum root systems develop?
4. Is there genetic variation?
5. Does genetic variation in nodal root angle affect water capture of mature plants?
6. Does this genetic variation associate with dryland crop productivity?
7. So What?
1. Dryland Crop Productivity

- Dryland crop water balance components
- Grain mass (M) is given by $T \times TE \times HI$
- HI relates to distribution of T in the crop cycle
- Can aspects of root system architecture affect extent of water capture (T) and timing of access (HI)?
2. Water Foraging Capacity of Sorghum Roots?

Field assessment of potential uptake

Broad and Hammer (2004) 4th ICSC, Brisbane

- RO shelter experiment
- Extent of root system growth and water capture
- Frequent sampling of soil water
- Less frequent sampling of roots!
2. Water Foraging Capacity of Sorghum Roots?

Field assessment of potential uptake

- Progression of water extraction front through soil profile

- Quantification of extraction front progression and extraction capacity
- Basis for modelling
3. How do Sorghum Root Systems Develop?

Lab and glasshouse assessment of root development

- Soil filled chambers
- 40 cm wide, 60 cm deep, 5 cm thick
- 4 hybrids; 3 reps
- 5 harvests (2-6 leaf stage)
- Wash out root systems on pinboard and image

Singh et al. 2010. Plant and Soil 333: 287-299
3. How do Sorghum Root Systems Develop?

Lab and glasshouse assessment of root development

Singh et al. 2010. Plant and Soil 333: 287-299

- Sorghum produced only 1 seminal root
- Nodal roots started to appear at 5-6 leaf stage
- Some suggestion of genotypic differences in nodal root angle
- Leaf 5-6 appears to be a critical stage for root screening (angle)
- Phenotyping requires chambers of at least 45 x 50 cm
4. Is there Genetic Variation in Root System Architecture?

Glasshouse screen of nodal root angle

- 214 genotypes screened
- Inbred lines - variation
- Hybrids - inheritance

- Inbred range 15-50°
- Heritability 70%
- Some SCA in hybrids
- Strong G effect

5. Does Genetic Variation in Seedling Nodal Root Angle Affect Water Capture of Mature Plants?

5. Does Genetic Variation in Nodal Root Angle Affect Water Capture of Mature Plants?

Large rhizotron experiments

- Rhizotrons 120 x 240 x 10 cm
- 4 inbred lines grown on stored soil moisture and harvested at anthesis
- Plant positioned 60 cm from side
- GWC at anthesis on 20x20 cm grid
5. Does Genetic Variation in Nodal Root Angle Affect Water Capture of Mature Plants?

Large rhizotron experiments

Wide angle hybrid

(a) SC170-6-8 (W)
(b) B9923296 (N)

c) SC170-6-8 (W)
(d) B9923296 (N)

Below plant Distant to plant
5. Does Genetic Variation in Seedling Nodal Root Angle Affect Water Capture of Mature Plants?

Large rhizotron experiments

- Used % to allow for differences in plant size.
- Wider root angle tended to have:
 - relatively less water extraction close to the plant
 - and relatively more away from the plant
6. Does Genetic Variation Associate with Productivity?

QTL for nodal root angle and yield association

- QTLs from screening expt – parents & mapping population
- Check with yield performance in breeding trials:
 - Nested Association Mapping (NAM) populations
 - RILs in hybrid combinations

Root architecture variation: rapid screening methodology

Mapping population

NAM populations

Breeding trials

Parental lines of mapping populations, NAM populations and breeding populations screened

Identify genomic regions and multiple alleles

Project onto consensus map and align to WGS
Root architecture variation: rapid screening methodology

Mapping population

\[\times \]

NAM populations

Breeding trials

Parental lines of mapping populations, NAM populations and breeding populations screened

Population screening and pre-existing performance data from NAM populations and breeding trials

List of candidate genes

Comparative genomics

Identify genomic regions and multiple alleles

Project onto consensus map and align to WGS
6. Does Genetic Variation Associate with Productivity?

QTL for nodal root angle and yield association

Localisation of QTL for four traits measured in this study.

QTL are colour-coded according to trait:

- nodal root angle - green
- root dry weight - brown
- shoot dry weight - dark blue
- total leaf area - light blue

6. Does Genetic Variation Associate with Productivity?

QTL for nodal root angle and yield association

Significance level of association between markers in the four nodal root angle QTL regions with grain yield in subsets of the RIL population in three different hybrid combinations (but small number of individuals - 53).

<table>
<thead>
<tr>
<th>QTL</th>
<th>LG</th>
<th>R995248</th>
<th>R986087</th>
<th>R993396</th>
</tr>
</thead>
<tbody>
<tr>
<td>qRA1_5</td>
<td>SBI-05-II</td>
<td>0.0228 +</td>
<td>NS</td>
<td>0.0696 +</td>
</tr>
<tr>
<td>qRA2_5</td>
<td>SBI-05-III</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>qRA1_8</td>
<td>SBI-08-II</td>
<td>0.0602 +</td>
<td>0.0780 +</td>
<td>NS</td>
</tr>
<tr>
<td>qRA1_10</td>
<td>SBI-10</td>
<td>0.0087 **</td>
<td>0.0415 +</td>
<td>NS</td>
</tr>
</tbody>
</table>

NS not significant P>0.1; + P<0.1; ** P<0.01;

The genetic regions controlling nodal root angle are also having an effect on yield

Yield was increased in the presence of the narrow root angle allele

7. So What?

- Good evidence for association of genetic variation in nodal root angle with drought adaptation via effects on RSA and water capture
- Targeted high(-ish) throughput phenotyping system derived from ecophysiological insight
- Strong genetic control, marker associations, species homology
- *Opportunity for phenotyping system and molecular breeding*
- *Opportunity for root system design simulation (G-to-P models & G(QTL)*M*E*)
- Needs confirmatory studies but the breeder is off and running!
Drought adaptation in sorghum – associations with nodal root angle and root system architecture

Graeme Hammer, Vijaya Singh, Erik van Oosterom, David Jordan – The University of Queensland

Colleen Hunt, Emma Mace – AgriScience Qld