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Talk Overview

= Definition of terms

= MG-RAST overview

=  Qur cloud adoption process
= Strategies for cloud adoption




Terms

= Clouds are computational utilities
— Provide metered access to processors, storage, networking

— Access to all resources via APIs
e Disintermediated access

— Enables specialization and competition

= Three basic models
— laaS

e Rental access to hardware
— Paa$S

e Framework for performing a particular set of tasks
— Saas

e Remotely deployed and managed software



Range of Cloud Options
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Metagenomics ...

Definition::

“random shotgun DNA sequencing applied directly to
environmental samples”

swhole shotgun metagenomics

=Result is a combination of short reads of DNA from all
organisms in sampled community

=" Mixed together

Who are they?

What are they doing?

IPHENYLALAN].NE, TYROSINE AND TRYPTOPHAN B!OSVNT}IES]SI




Today: Future:
Mapping our Discover new
knowledge to help biology from
understand computationally
microbial ecology mining the
unknowns
- using existing
knowledge
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—> co-occurrence
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Via:
Mapping to curated Examble
databases Systematic discovery of
patterns
e.g. CRSPR by Jill Banfield




metagenomlcs analyms server
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Brief history of MG-RAST

Upload
=  December 2007 (v1)

— 100+ groups and ~250 data submitters S

C / normalization
— 100+ data sets, ~10+ GBp total size

= QOctober 2009 (v2) ﬂ

— Pre-publication sharing available
— ~1500 data submitters, ~300 public data sets

— 6000+ data sets Similarity analysis
— 200+ GBp total data sets
— About ~30 GBp/month throughput ﬂ
=  March 2011 (release v3)
3000 putie data sets
_ ~2000 public data sets Metabolic reconstruction

— 25,000 data sets total C it tructi
_ Throughput: ommunity reconstruction

e 47GBpin 24h
e 3000 submissions in 24h
= January 2012 (v3.1.2)
— 36,139 data sets
— 9.31 TBp analyzed
— 500 users / day
— 7500+ users total
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Observations (circa 2009)

= We'rein trouble
— Data set size is outpacing our throughput
— The pipeline is getting further and further behind
=  Gap between sequencing costs and computation costs is growing
— We’re in a hole, and it is getting deeper
= Computational capacity is a serious concern
— Computing is growing its share of the budget

— But the scaling curves suggest we won’t be able to keep up solely with
hardware additions

= Any sustainable solution will require algorithm changes
— What is the most relevant/useful analysis we can afford to compute?
= Public portals have a complicated resource consumption dynamic
— Users abstracted from resource costs



MG-RAST v2 Computational Architecture
=> Purpose built dedicated system

= Standard bioinformatics pipeline design
= Dedicated compute resources
— ~64 nodes
= Tightly integrated system/runtime environment

— Global filesystems
— Single resource manager (SGE)

=  Shared with another project
— Configuration/change difficulties

— Capacity problems
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MG-RAST Cloud Adoption Strategy

Goals: Scale the MG-RAST pipeline to work across distributed and shared resources
Get the most work done with the resources we can access

=  Pursue shared computing resources
— Dedicated resources are a luxury we can’t afford
=  Perform detailed performance analysis
— Where are our bottlenecks?
= Redesign analysis workflow
— Negotiate tradeoffs between performance and sensitivity
— Continuous refinement
= Use resources efficiently
— Nebulous concept; varies between resource types
— Minimize computational (and financial) costs
= Move the most expensive computational stages to the cheapest resources

— Sequence similarity search



Software requirements

Portability of analysis was the key problem to solve
— Analysis orchestration
— Data mobility
— Tool execution portability
= Replaced system resource manager with a distributed workload
management system
— Argonne/Another Workflow Engine (AWE)
— Data portability layer (Shock)
=  AWE provides encapsulation for analysis work flows

— Analysis environment and package prerequisites sent to compute elements on
the fly

— Minimal requirements on host environment
— Can be run under system resource manager
= Enabled execution of the sims calculation across a range on shared
systems
— HPC clusters
— Cloud resources




Our new architecture

= Centralized web portal
— Database server
— Archival dataset access
= Centralized orchestration of computation
— Workload management
— Storage services
=  Small dedicated cluster
— For data intensive operations only
— Moving these tasks towards the data archival infrastructure
= Dynamic cloud resources (laaS)
— Large scale similarity searches
— Clustering
— QC
=  Focusing on driving more systems into the cloud
— Let our sysadmin focus on running the software, not the hardware
— Need to address performance issues for specialized systems on the way




How did this work?

Enabled MG-RAST to use any resources we could get access to
— Regardless of geographic location (ANL or NERSC)
— For any available duration (workunits run for 10-30 minutes each)
— With any kind of system environment

= This expansion helped, but not a panacea

— Access to more capacity with growth helps, but we can’t expect an ever
increasing slice of the pie

= Qverall impact was about a 10X improvement in throughput
— More or less a one trick pony, aside from Moore’s Law improvements

= |nitially targeting a single work type (similarity search) proved to be a long
term liability

— Should have pushed more of our system into the cloud initially

= |nfrastructure flexibility enabled easy experimentation with new analysis
approaches

— Biggest overall payoff for our group



Lessons Learned

= Access to large shared resources wins
— Better than dedicated access to small resources
=  Cloud APIs and sandboxing enable rapid improvement of computing
architecture
=  Clouds simplify experimentation

— Lets you focus on the hard thinking
e |n our case, analysis/algorithm development

— Isn’t this why we are all here?
= These factors have caused us to start moving most of our development
activities towards clouds

— Moving emphasis away from dedicated resources, even for ad hoc
development




Three Architectures for Cloud Adoption

= Pile of instances
— Everybody builds their own
— Maximum flexibility, maximum complexity
— Who wants to be a sysadmin!
= Curated set of images
— Small set of image maintainers
— Large set of image instantiators

— Limits administration/maintenance costs

=  Persistent, managed group infrastructure
— Sysadmin runs resources inside the cloud
— More flexible and dynamic than dedicated hardware
— Less flexible than previous two
— Most similar to the status quo



Cloud Adoption Architectures (cont)

= No right answer
= Many tradeoffs between approaches
— Flexibility versus Cost
= Some require particular resources
— System administration effort
— Technical expertise
= Options vary with group size
— DIY is popular for small groups, but gets costly in large groups
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Questions?
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