Basic adaptation of perennial plants to environment
Determines species range
Subject to climate change

Seasonal dormancy

- Photoperiod
- Temperature
- Water
- Carbohydrates
- Hormones
 - Auxin
 - Gibberellic acid
 - Abscisic acid
 - Ethylene

Factors affecting dormancy

- Photoperiod sensing
- Temperature sensing
- Cellular signalling
- Growth regulation/hormonal signalling
- Epigenetic modification
 - Chromatin remodelling
 - 5-methylcytosine (5mC)

Questions

- How does gene expression change over the course of bud dormancy?
- How does the epigenome – specifically DNA methylation (5mC) – change during bud dormancy?
- How does 5mC content of different gene features affect gene expression?
Approach

- *Populus trichocarpa* (Nisqually-1) vegetative lateral buds (5th or 4th node below terminal) sampled in August, December, March (3 biological reps)
- Assess genome-wide cytosine DNA methylation (5mC) using MeDIP-seq
- Analyze transcriptome using RNA-seq with same samples

Results: outline

- Gene expression
- DNA methylation (5-methylcytosine, 5mC)
- Gene expression-5mC relationship
- Candidate regulatory gene examples
 > expression trends
 > 5mC trends

Distinctive seasonal gene expression profiles

- Spring buds (ecodormant) have more genes in the 1-5 FPKM range.
- Fall (paradormant) and winter (endodormant) buds have more genes with >= 10 FPKM.

Bioinformatic analysis

RNA-seq
- Illumina HiSeq1000 (2 x 100 bp)
- TopHat/CuffDiff for ID of differentially-expressed genes (*P. trichocarpa* V3 genome assembly)

MeDIP-seq
- Illumina GAIIx (1 x 36 bp)
- Methylation-enriched genome regions (1 kb tiled windows, gene promoters, gene bodies) determined by comparison to non-IP control @ 10% FDR (*P. trichocarpa* V2.2 genome assembly)

Gene expression

Transcriptome changes over the course of seasonal dormancy

ENDO with largest number of differentially-expressed genes

Pairwise comparisons
Cluster 2: predominant in PARADORMANCY

- Gene Ontology overrepresentation: 16 categories related to lipid metabolism
- 286 genes

Cluster 3: predominant in ENDODORMANCY

- Gene Ontology overrepresentation: 92 categories
- 653 genes
- Abiotic stress response
- Carbohydrate catabolism
- Transcriptional regulation

Cluster 3: GO overrepresentation (biological process)

- Carbohydrate metabolism
- Abiotic stress response
- Transcriptional regulation

Cluster 3: predominant in ENDODORMANCY

- Examples of other categories not overrepresented, but relevant to dormancy:
Cluster 4: predominant in ECODORMANCY

No overrepresented Gene Ontology categories

Examples of genes in this cluster:
- Potri.005G244100 similar to Alpha-expansin
- Potri.008G163900 similar to Transcriptional regulator SUPERMAN
- Potri.013G053200 similar to Syntaxin-related protein KNOLLE (Syntaxin 111)
- Potri.006G142600 nutrient reservoir activity
- Potri.007G013500 similar to histone H4 from Lycopersicon esculentum

Examples of genes in this cluster:
- 5mC changes during dormancy transitions
- MeDIP-seq
 - Illumina GAIIx (1 x 36 bp)
 - Methylation-enriched genome regions (1 kb tiled windows, gene promoters, gene bodies) determined by comparison to non-IP control @ 10% FDR (P. trichocarpa V2.2 genome assembly)

Promoters, gene bodies have similar 5mC trends

No clear gene expression – PROMOTER 5mC relationship among season predominant clusters

Cytosine DNA methylation

5mC changes during dormancy transitions

Genome 5mC has no consistent seasonal trends

• 3 biological replicates/ season
• Large variance

607 597 574
1484 1113 1012

ENDO PARA ECO
No clear gene expression – GENE BODY 5mC relationship among season predominant clusters

Promoter and gene body 5mC – expression correlation weak or absent

Data from all seasons pooled
• Higher gene expression weakly correlated ($r = -0.17$) with lower promoter 5mC in rank-based correlation tests ($p=0$)
• No correlation between gene body 5mC and gene expression ($p=0.52$).

Identification of candidate regulatory genes

FORWARD APPROACH
• Hierarchical clustering of differentially-expressed genes
• Lists of season-predominant genes
• Examination of expression vs. methylation

REVERSE APPROACH
• Genes with known or putative roles in dormancy in Populus spp. or other plant species
• Poplar homologs
• Examination of expression vs. methylation

~1100 genes ~100 genes

Candidate regulatory genes

PARA-predominant

ENDO-predominant

APETALA2 (AP2) / ETHYLENE-RESPONSIVE ELEMENT BINDING PROTEIN (EREBP)

Transcription factors
• Unique to plants
• 37 annotated in P. trichocarpa V3)
• Regulation of multiple processes
 >Dormancy induction
 >Drought/freezing tolerance

AP2 Expression-5mC comparison
PARA-predominant

5mC

solid line= promoter, dotted line= gene body
Summary

- **Future work**: statistical evaluation of methylome variation, further interrogation of candidate dormancy-associated genes
- **Extensive transcriptome reorganization during bud dormancy**
- **Lipid, carbohydrate metabolism extensively reconfigured**
- **Distinct expression profile in endodormancy relative to paradormancy and ecodormancy**
- **Largest number of genes (653) upregulated during endodormancy**
Acknowledgements

Oregon State University
Poplar Epigenomics Project
Kyle R. Pomraning
Larry J. Wilhelm
Cathleen Ma
Yuming Di
Todd C. Mockler
Michael Freitag
Steven H. Strauss

Funding
U.S. Department of Energy
Plant Feedstock Genomics Program (# ER64665)

Oregon State University
Center for Genome Research
and Biocomputing