Rationale

- Challenge to increase yield in the face of climate change and diminishing water resources
- Genetic improvement via modern plant breeding is the most sustainable and economic approach to meet this challenge
- Development of superior heat and drought tolerant cultivars has been slow and difficult
- Breeding progress could be improved by development of new ways to connect phenotype to genotype

Research Objectives

- To develop a genotyping-by-sequencing (GBS) approach for multiplex genotyping of a cotton RIL population
- To develop a field-based, proximal remote sensing approach for high-throughput phenotyping (HTP) of adaptive traits in a cotton RIL population

Genotyping-By-Sequencing

“...massively parallel sequencing of multiplex reduced-representation genomic libraries.”

“massively parallel sequencing” = sequencing on Illumina HiSeq platform

“multiplex” = using DNA barcode (unique 5-10bp)
- DNA sequence synthesized on the adapter
- pool 48-384 samples together

“reduced-representation” = use restriction enzyme to capture only the low-copy portion of the genome flanking restriction sites
- methylation-sensitive restriction enzymes

Elshire et al. 2011 PLoS ONE 6(5): e19379

GBS: Library Construction

Applying GBS in upland cotton
- TM1 x NM24016 RIL population
 - 94 RILs + 2 parents
 - 96-plex GBS library (PstI-MspI)
 - Sequence 2x on Illumina HiSeq

J. Poland

TM-1 NM24016 RIL population

TM-1: genetic standard for *G. hirsutum*

NM24016: an elite *G. hirsutum* line with considerable (1/3) but stable introgression from several *G. barbadense* lines
GBS: Bioinformatics Pipeline

- Parse reads by barcode
- Collapse identical reads
- Identify tags that differ by 1 or 2 bases
- Fisher Exact Test: Reject H_0, $P < 0.001$
- Assign genotype scores to lines for biallelic SNPs

GBS: SNP Calls for RILs

- Constructed genetic map has 500 SNPs with 500 SSRs – low polymorphism rate and segregation distortion

HTP: Sensors, Platform, and Vehicle

- Canopy Tm
- Infrared thermometer
- Plant height
- Ultrasonic Transducer
- Vegetation Indices
- High-clearance tractor
- Average speed of 2.82 km/h
- 1 data point/meter (1 Hz)

HTP: Canopy Temperature

Central Arizona: clear skies, very limited rain, high temperatures
Population: TM-1 x NM24016 of 94 RILs ($Gossypium$ hirsutum L.)
Treatment: 100 and 50% ET (2 reps) drip irrigation

Spatial analysis to control for soil variation when calculating BLUPs

- Dry Rep2: 33–40°C
- Wet Rep1: 29–30°C
- Dry Rep1: 31–40°C

1 pm on day 224 (12-Aug)

Heritability estimates are 0.52 0.11 for wet at 1 pm and 0.58 0.09 for dry at 1 pm

Significant Time-by-Treatment Interaction for Canopy Temperature

- Treatment $P < 0.05$
- Time $P < 0.0001$
- Treatment*Time $P < 0.0001$
Repeatability of Δ in Canopy Tm

$R^2 = 0.54$

Consistent phenotypic response to stress

QTL Analysis: Canopy Temperature

<table>
<thead>
<tr>
<th>TRT</th>
<th>DOY</th>
<th>Time</th>
<th>Chr</th>
<th>cM</th>
<th>Left Marker</th>
<th>Right Marker</th>
<th>LOD</th>
<th>PVE(%)</th>
<th>Add</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry</td>
<td>217</td>
<td>2 pm</td>
<td>20</td>
<td>17</td>
<td>SNP0405</td>
<td>CIR353a</td>
<td>3.87</td>
<td>19.24</td>
<td>0.71</td>
</tr>
<tr>
<td>Dry</td>
<td>224</td>
<td>1 pm</td>
<td>20</td>
<td>11</td>
<td>SNP0064SNP0406</td>
<td>3.66</td>
<td>19.15</td>
<td>0.74</td>
<td></td>
</tr>
</tbody>
</table>

Inclusive CIM with a 0.05 Type I Error Rate

HTP: Normalized Difference Vegetation Index (NDVI)

$NDVI = \frac{(NIR-\text{red})}{(NIR+\text{red})}$

NIR 820 nm
Red 670 nm

Wilting Index (WI)

$WI = \frac{(NDVI_{pm} - NDVI_{pm})}{NDVI_{pm}}$

 Significant Time-by-Treatment Interaction for NDVI

Heritability estimates are 0.79 0.04 for wet 1 pm and 0.59 0.09 for dry 1 pm

Repeatability of Wilting Index

$R^2 = 0.76$

Consistent phenotypic response to stress

QTL Analysis: Wilting Index

<table>
<thead>
<tr>
<th>DOY</th>
<th>Time</th>
<th>Chr</th>
<th>cM</th>
<th>Left Marker</th>
<th>Right Marker</th>
<th>LOD</th>
<th>PVE(%)</th>
<th>Add</th>
</tr>
</thead>
<tbody>
<tr>
<td>217</td>
<td>2 pm</td>
<td>25</td>
<td>0</td>
<td>DPL0702a</td>
<td>SNP0189</td>
<td>5.04</td>
<td>21.1688</td>
<td>-0.0322</td>
</tr>
<tr>
<td>224</td>
<td>7 am</td>
<td>25</td>
<td>0</td>
<td>DPL0702a</td>
<td>SNP0189</td>
<td>3.9116</td>
<td>18.6331</td>
<td>-0.0202</td>
</tr>
<tr>
<td>224</td>
<td>10 am</td>
<td>13</td>
<td>0</td>
<td>SNP0291</td>
<td>MUSB0285a</td>
<td>3.6904</td>
<td>13.4431</td>
<td>0.0195</td>
</tr>
<tr>
<td>224</td>
<td>10 am</td>
<td>25</td>
<td>0</td>
<td>DPL0702a</td>
<td>SNP0189</td>
<td>5.6989</td>
<td>22.9366</td>
<td>-0.0254</td>
</tr>
<tr>
<td>224</td>
<td>1 pm</td>
<td>13</td>
<td>50</td>
<td>SHIN-1452a</td>
<td>DPL0894a</td>
<td>3.6627</td>
<td>15.0096</td>
<td>0.0308</td>
</tr>
<tr>
<td>224</td>
<td>1 pm</td>
<td>17</td>
<td>10</td>
<td>NAU1167a</td>
<td>SHIN-0727a</td>
<td>3.7761</td>
<td>15.1813</td>
<td>0.0328</td>
</tr>
</tbody>
</table>

Inclusive CIM with a 0.05 Type I Error Rate
Conclusions

• Constructed a GBS genetic map for tetraploid cotton RIL population without a need for a reference genome or downstream SNP assays

• Developed a field-based HTP approach to rapidly phenotype 100s to 1000s of plots for several canopy traits

• Canopy temperature and wilting index are moderately to highly heritable as well as repeatable QTL on a temporal scale

Next Steps for HTP

• HTP for screening 1,000 cotton cultivars and day-neutral landrace lines for stress tolerance

• HTP for evaluating very large cotton RIL populations (e.g., cotton NAM populations)

• Investigate G × E in multiple crops with HTP for many different phenotypes (disease, yield…)

• Testing new imaging and non-contact sensor technologies for phenotyping

Optical Remote Sensing with Light Detection And Ranging (LIDAR)

Bob Strand and Andy French

Acknowledgements

Gore Lab
Alex Lipka
Joel Gilley
Kristen Harbour
Virginia Moreno
Sara Wyckoff
U of A
Pedro Andrade-Sanchez
John Heun
NMSU
Jinfa Zhang

U.S. ALARC
Andy French
Doug Hunsaker
Mike Salvucci
Kelly Thorp
Jeff White

USDA-ARS
Jesse Poland
Richard Percy
David Fang

GBS: Sample Genotyping Costs

J. Poland
GBS: Bioinformatics Pipeline

Parse sequences to samples using barcode

Collapse identical tags (matrix of counts – presence/absence)

SNPs:
- Identifying tags: 1) differing by 1 or 2 bp
- Segregating in population
- Not in same line

Map reads to genetic map using reference markers

SNPs
- Fisher exact test for significance, BIN mapping
- ML to position in interval between markers

Tags
- (Dominant markers) binomial probably for significance testing, ML to position within interval (matrix of tags/SNPs with genotype calls by line)

de novo genetic map

Poland et al. 2012 *PLoS ONE* 7(2): e32253
Phenotypic Variability of Canopy Temperature

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Frequency</th>
<th>Mean</th>
<th>Std Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.28</td>
<td>32.96</td>
<td>Mean</td>
<td>1.94</td>
</tr>
<tr>
<td>37.98</td>
<td>38.38</td>
<td>Mean</td>
<td>1.72</td>
</tr>
</tbody>
</table>

Wet and Dry Plots at 1 pm on Day 224

Relationship between ∆ Canopy Tm and Wilting Index

R² = 0.49

How do we connect phenotype to genotype for complex adaptive traits?

HTP: Plant Height

R² = 0.81

“Worst drought in years...”

Source: U.S. Drought Monitor

Source: U.S. Drought Monitor