EPIGENETIC LANDSCAPES IN A MARINE MOLLUSC:

What DNA methylation patterns tell us about gene regulation in the Pacific oyster (Crassostrea gigas)

Mackenzie Gavery & Steven Roberts
University of Washington, School of Aquatic and Fishery Sciences

Outline
- Background
 - Epigenetics
 - DNA methylation
- Results
 Characterization of DNA methylation in Pacific oysters
- Discussion & Future Directions

Epigenetics
- Heritable changes in trait or phenotype, caused by a mechanism other than mutation to the DNA sequence
- Most well understood epigenetic mechanism is DNA methylation
 - Regulates gene expression
 - Development
 - Tissue-specific expression
 - Genome stability
 - Environmental response
DNA methylation: invertebrates

- Only a handful of species have been evaluated
- Model invertebrates lack DNA methylation
- Most have 'intermediate' methylation
- Primarily in exons
- Important regulatory functions – e.g. honey bee

Summary of Previous Results

- CpG O/E
 - Predicted degree of DNA methylation

Goals

- EPIGENOME (DNA methylation)
- GENES (DNA)
- TRAITS
 - color
 - growth
 - disease resistance
 - ENVIRONMENT
 - nutrition
 - temperature
 - pathogens
 - nightfall
Goals

EPIGENOME (DNA methylation)

GENES (DNA)

ENVIRONMENT

color
disease resistance
growth
temperature
pathogens
nutrition

TRAITS

Approach

- High-throughput bisulfite sequencing:
 - Gill
 - Gametes (male)
- Other resources:
 - RNA-seq datasets: gill, male gonad (Zhang et al, 2012)

Workflow

- Prepare gDNA library for methylation analysis
- Data Analysis

Workflow

- Prepare gDNA library for methylation analysis
- Data Analysis
- Illumina library
- Bisulfite conversion
Workflow
- Prepare gDNA library for methylation analysis
- Data Analysis

Data Analysis

Workflow
- Prepare gDNA library for methylation analysis
- Bisulfite conversion

Workflow
- Prepare gDNA library for methylation analysis
- Data Analysis

Workflow
- Prepare gDNA library for methylation analysis
- Data Analysis
 - BSMAP software
 - Map to reference genome

Results
- 250,876 CG dinucleotides

Results

![Galaxy Trackster](scaffold_86_200000bp.png)
Results

- 250,876 CG dinucleotides
- Distribution in genomic elements

Relationship with expression
Results

- Relationship with expression

![RNASeq data (Zhang et al., 2012)](image)

Differentially methylated regions

- DMR definition:
 - 100bp window
 - ≥25% difference
- 35% of the windows were differentially methylated

DMR: Visualization

- gill
- male gonad
- sperm

DMR: Visualization

- gill
- male gonad
- sperm
DMR: Visualization

RNA-Seq methylation

Gill
Male gonad
Gill
Sperm

Summary

GENES (DNA)

EPIGENOME (DNA methylation)

ENVIRONMENT

Traits: color, disease resistance, growth

Environment: temperature, nutrition, pathogens, radiation
DNA methylation landscape is complex
- Genes with high transcript abundance, have highest gene body methylation
- Methylation patterns are tissue specific
- Tissue-specific methylation is frequently found in 'expressed' portions of the genome.
- Fine scale differences in methylation within a gene

Generate DNA methylation and gene expression profiles from the same sample.
- Explore possibility that methylation is associated with alternative splicing
Summary

- GENES (DNA)
- EPIGENOME (DNA methylation)
- ENVIRONMENT

TRAITS:
- color
- growth
- disease resistance
- temperature
- pathogens
- nutrition

Acknowledgements

- **Roberts Lab:**
 - Samuel White
 - Caroline Storer
 - Emma Timmins-Schiffman
 - Claire Ellis
 - Lisa Crosson

- **Taylor Shellfish:**
 - Jonathan Davis
 - Molly Jackson

email: mgavery@uw.edu
website: students.washington.edu/mgavery