Maize Phenotyping under the Seeds of Discovery Initiative: The Brute Force Method

Martha C. Willcox
Maize Landrace Improvement Coordinator

Coauthors:
CIMMYT: Juan Burgueno, Armando Guadarrama, Daniel Chepetla, Enrique Rodriguez, Dan Jeffers, George Mahuku, Iván Ortiz-Monasterio, Natalia Palacios, Félix San Vicente, Rosemary Shrestha, Samuel Trachsel, Sarah Hearne, Peter Wenzl
INIFAP: Noel Gómez, Alejandro Ortega, Ernesto Preciado, Víctor Vidal
Pioneer-Mexico: Fernando González, Heriberto Torres, Marco Oropeza
Gates Foundation: Gary Atlin
UAAAN-UL: Armando Espinoza Banda
Bidasem: María E. Rivas-Dávila
ICAMEX: Francisco Javier Manjarres
Productores de Semilla de Copandaro: Humberto Vallejo

Seeds of Discovery

Genome Wide Association Study (GWAS) in Maize

- Breeder’s Core Collection from the CIMMYT Maize Germplasm Bank (4471 accessions).
- One plant per accession crossed with a CIMMYT hybrid to make a series of modified topcrosses.
 - The same plant was sampled for DNA extraction/GBS
- Accessions were crossed hybrids of their same environmental adaptation (where possible).
 - Tropical Accessions X Tropical Hybrid
 - Subtropical Accessions X Subtropical Hybrids
 - Highland Accessions X Highland Hybrid
Phenotypic Trials

- 36 trials planted - 34 harvested (34,606 rows and over 687,000 unique data points)
- 19 Trials for abiotic Stresses (Drought, Heat, Low Nitrogen)
- 11 Trials for diseases (Tar Spot Complex, Grey Leaf Spot, Turcicum Leaf Blight, Fusarium Ear Rot, Fusarium and Acremonium Stalk Rot)
- 3 Trials hand pollinated to produce grain for Quality Component Analysis.

Yield and Agronomic Data Taken: All Locations

- Yield (field weight, grain and cob weight, moisture, number of ears)
- Plant Height and Ear Height
- Male and Female Flowering (50% of row)
- Stalk and Root Lodging

Experimental Design

- Unreplicated augmented row-column design
- For each trial location accessions are selected for adaptation zone and maturity.
- Overlapping sets of topcross entries
- Two widely adapted commercial checks and resistant and susceptible checks where appropriate

Example of Trial Design

Standard commercial checks (●) and resistant (○) and susceptible (□) checks, to adjust for spatial variance for specific traits within the trial.
Model for Analysis

BLUPs - (Best Linear Unbiased predictors) calculated for male accession parent by removing the average effect of the hybrid tester and using check entries to adjust for spatial variation.

Challenges

- Range of maturities (flowering extends for 5 weeks)
- Lodging
- Segregation
- Diversity of environments (both origin of accessions and evaluation sites)

Tar Spot Complex

- **Tar Spot Trials**
 - 2011B Guadalupe-Victoria, Chiapas – 600 Accession/Topcross entries
 - 2012B Guadalupe-Victoria, Chiapas – 810 accession/topcross entries *(including accessions per se)*
 - 2 foliar ratings 0-5 scale (Ceballos and Deutsch) two weeks apart.
 - Data taken both by row and as average of 6 plants per row

Comparison of average female flowering date with range of female flowering for 191 accession topcrosses (per plant data)
Relationship between Tar Spot rating and Yield (2nd foliar rating: scale 0-5; average of 6 plantas)

![Graph showing relationship between Tar Spot foliar rating and yield]

Characterization for Stalk Rot

![Image of crops and research equipment]

Fusarium Stalk Rot: Artificial Inoculation

Evaluation of Accessions PerSe for Acremonium Stalk Rot

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial (resistant check)</td>
<td>0.43</td>
<td>0.5</td>
</tr>
<tr>
<td>PUE45</td>
<td>1.16</td>
<td>1.7</td>
</tr>
<tr>
<td>MORE65</td>
<td>1.53</td>
<td>2.3</td>
</tr>
<tr>
<td>GUER125</td>
<td>1.59</td>
<td>2.4</td>
</tr>
<tr>
<td>NAYAGP6</td>
<td>2.13</td>
<td>2.5</td>
</tr>
<tr>
<td>CHS128</td>
<td>2.56</td>
<td>2.9</td>
</tr>
<tr>
<td>MICH21</td>
<td>3.21</td>
<td>2.9</td>
</tr>
<tr>
<td>TC X URUG39 (susceptible)</td>
<td>4.5</td>
<td>5.97</td>
</tr>
</tbody>
</table>

![Graph showing relationship between Yield and Stalk Rot Scale (percentage of stalks with disease x intensity of disease)]