Designing Disease Resistant Plants

Ben Matthews
USDA-ARS
Soybean Genomics & Improvement Laboratory
Beltsville, MD
ben.matthews@ars.usda.gov

Plant & Animal Genome January 10, 2015

Soybean production in the USA

- 72.7 million acres (equal to corn)
- 2.8 billion bushels
- $30 billion industry in USA
- $1-2 billion is lost annually to soybean cyst nematode

Plant parasitic nematodes reduce crop yield

- Cause $100 billion in crop losses each year worldwide
- All plant crops are susceptible to nematodes

Belonolaimus Meloidogyne Heterodera Pratylenchus
Hoploaimus Globodera Ditylenchus Rotylenchulus

Genetically engineer plants resistant to nematodes

- Approaches
 - Over-express genes to provide resistance
 - Turn off soybean genes to provide resistance
 - Turn off critical nematode genes important to nematode survival

Timeline of SCN at 4, 6, 8 days after infection in a resistant (Peking) and susceptible (Kent) soybean cultivar

Peking 4D Peking 6D Peking 8D
Kent 4D Kent 6D Kent 8D

Laser Capture Microdissection

- Collect a homogeneous population of syncytial cells – 3, 6 and 9 dai
- Determine gene expression patterns in those cells

Leica LCM System
Klink et al. 2007b Planta
Pipeline Soybean Assay

- Grow seedlings 7 days
- Transform by agro inoculation
- Grow in greenhouse
- Trim non-transformed roots
- Green fluorescent roots are inoculated with SCN. Assay at 35 days

Transformation Pipeline

1. Identify soybean genes
2. Identify SCN genes
3. Over expression
4. Silencing
5. pRAP shuttle vectors
6. Transform soybean roots
7. Challenge with SCN
8. Identify new resistance

Promoters of seven of nine genes greatly enhancing susceptibility contain an auxin TF binding site

<table>
<thead>
<tr>
<th>Predicted Function</th>
<th>Location (nt)</th>
<th>FI OX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oligopeptide transport</td>
<td>yes</td>
<td>254</td>
</tr>
<tr>
<td>UDP glucuronate 4-epimerase</td>
<td>yes</td>
<td>232</td>
</tr>
<tr>
<td>Unknown</td>
<td>yes</td>
<td>229</td>
</tr>
<tr>
<td>Cupin domain</td>
<td>yes</td>
<td>214</td>
</tr>
<tr>
<td>Ca²⁺ kinase</td>
<td>yes</td>
<td>197</td>
</tr>
<tr>
<td>Pectate lyase</td>
<td>yes</td>
<td>197</td>
</tr>
<tr>
<td>Lipase</td>
<td>yes</td>
<td>195</td>
</tr>
<tr>
<td>Peroxidase</td>
<td>yes</td>
<td>195</td>
</tr>
<tr>
<td>Auxin permease</td>
<td>yes</td>
<td>174</td>
</tr>
</tbody>
</table>
Silencing several of these genes provided some resistance.

<table>
<thead>
<tr>
<th>Predicted Function</th>
<th>Location (nt)</th>
<th>FI</th>
<th>KO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oligopeptide transporter</td>
<td>yes</td>
<td>254</td>
<td>64</td>
</tr>
<tr>
<td>UDP-glucuronate 4-epimerase</td>
<td>yes</td>
<td>232</td>
<td>ND</td>
</tr>
<tr>
<td>Unknown</td>
<td>yes</td>
<td>229</td>
<td>45</td>
</tr>
<tr>
<td>Cupin domain</td>
<td>ND</td>
<td>214</td>
<td>ND</td>
</tr>
<tr>
<td>Ca²⁺ kinase</td>
<td>yes</td>
<td>197</td>
<td>35</td>
</tr>
<tr>
<td>Pectate lyase</td>
<td>yes</td>
<td>197</td>
<td>67</td>
</tr>
<tr>
<td>Lipase</td>
<td>ND</td>
<td>195</td>
<td>ND</td>
</tr>
<tr>
<td>Peroxidase</td>
<td>yes</td>
<td>195</td>
<td>71</td>
</tr>
<tr>
<td>Auxin permease</td>
<td>yes</td>
<td>174</td>
<td>35</td>
</tr>
</tbody>
</table>

RKN and SCN – two different genera - can be controlled by over-expression of genes.

PAD4 overexpression to control RKN and SCN

Silencing host genes using RNAi

Silencing host genes using RNAi
Silence nematode genes

- RNAi produced in the root
- Nematode feeds and ingests RNAi
- Nematode target transcript is degraded

Gene silencing RNAi constructs against root-knot nematode

- Non-transformed Control
- LDH gene
- ATP gene
- Empty vector control
- MS-70 gene
- TP gene

Broad nematode control is coming

- We can achieve broad control of two genera of nematodes
 - Meloidogyne (RKN)
 - Heterodera (SCN)
- Over-express genes to decrease nematode development
- Silence plant and nematode genes to decrease nematode development

More possibilities???

- Are plants with these constructs resistant to other biotrophic pests and pathogens?
- Can we take a similar approach manipulating jasmonic acid to control necrotrophs?
- Can we combine approaches to engineer in plants broad resistance to pathogens???