Evaluating Genomic Selection in the First Two Cycles of a Winter Barley Breeding Program

Celeste Marie Falcon
PAG XXIII – January 10, 2015

Agronomic and ecosystem benefits

- Increased yield
- Disease avoidance
- Weed suppression
- Water use efficiency
- Carbon sequestration
- Nutrient cycling
- Reduced soil erosion
- Potential relay-cropping system with soybean

Photos taken April 26, 2010

Genomic selection

- To initiate a breeding program for winter barley in the upper Midwest, we are using genomic selection
- Enables selection for any type of trait based on marker data alone
- So far, mostly simulation studies for rate of gain (empirical studies only on accuracy)

Genomic selection process:

1. Training population: Phenotypic and genotypic information
2. Estimate marker effects
3. Select candidates: Genotypic information only
4. Predict trait value (GEBVs)
5. Select parents
6. Make crosses
7. Generate new population
8. Re-train model

Meuwissen et al., 2001

Crossing

C0: 47 lines from OSU and UMN breeding programs
C1: 768 F3 lines (all facultative)
C1R: 100 lines chosen at random as control
C1GS: 100 lines chosen by genomic selection
C1PS: 100 lines chosen by phenotypic selection
C2: 768 F2 lines (all facultative)
C2R: 100 lines chosen at random as control
C2GS: 100 lines chosen by genomic selection

Hayes et al., 1993; von Zitzewitz et al., 2005
Selection

Genomic selection
- Training population – 148 breeding lines from Oregon State breeding program including some parental lines
 - Genotypic data: 3072 BOPA 1 and BOPA 2 SNP markers
 - Phenotypic data: evaluated for LTT in the field and controlled growth chamber tests as well as other traits in the field
- Selection candidates
 - Genotypic data: 384 BOPA SNPs; additional markers imputed for a total of 1333 SNPs

Genomic selections were based on an index trait combining genomic predictions for 5 traits:

\[
y = 0.1 \text{ grain yield} - 0.1 \text{ plant height} - 0.05 \text{ heading date} + 0.2 \text{ malt extract} + 0.55 \text{ LTT}
\]

Phenotypic selection
Visual selection for winter survival in the field

Advantage: uses all marker info
- In traditional marker-assisted selection, choice of markers is somewhat arbitrary
- Quantitative traits are affected by so many loci that it is inefficient to use MAS to pyramid desirable alleles

Advantage: reduces work and cost associated with phenotyping
- Winter hardiness is genetically complex—several large effect loci plus small effect loci
- Difficult to measure—some seasons will be too mild or too harsh to collect survival data
- With GS, only need to phenotype the training population
- Genotyping cost continually decreasing

Phenotypic Selection
Yield: $5/line (per rep per location)
Quality: $100/line

Genomic Selection
384 SNPs Veracode Assay: $17/line

Evaluating selected sets

C0 lines and 50 individuals from each selected set—C1R, C1GS, C1PS, C2R, C2GS—assessed in augmented design trials in 2014

<table>
<thead>
<tr>
<th>Trait</th>
<th>Location</th>
<th>Planted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter survival</td>
<td>St. Paul, MN</td>
<td>Fall</td>
</tr>
<tr>
<td></td>
<td>Lamberton, MN</td>
<td>Fall</td>
</tr>
<tr>
<td></td>
<td>Mead, NE</td>
<td>Fall</td>
</tr>
<tr>
<td>Grain yield</td>
<td>Corvallis, OR</td>
<td>Fall</td>
</tr>
<tr>
<td></td>
<td>St. Paul, MN</td>
<td>Spring</td>
</tr>
<tr>
<td>Heading date</td>
<td>St. Paul, MN</td>
<td>Fall</td>
</tr>
<tr>
<td></td>
<td>Spring (2 trials)</td>
<td></td>
</tr>
<tr>
<td>FHB severity</td>
<td>St. Paul, MN</td>
<td>Spring</td>
</tr>
<tr>
<td></td>
<td>Crookston, MN</td>
<td>Spring</td>
</tr>
</tbody>
</table>

Change in genotypic frequencies
- Shifts in marker genotypes linked to winter hardiness traits

Advantage: accelerates breeding cycle

Gain from selection

Winter Survival

index weight = +0.55

Gain from selection

Winter Survival

index weight = +0.55

Gain from selection

Winter Survival

index weight = +0.55

Gain from selection

Yield

index weight = -0.05

Gain from selection

Heading Date

index weight = +0.1

Gain from selection

FHB Severity

not part of Index
Influences on rate of gain

- Decreased accuracy over cycles of selection

\[\text{Predictive ability} = \text{corr} (\text{Predicted, Phenotypic}) \]

\[\text{Prediction accuracy} = \frac{\text{Predictive ability}}{\sqrt{H^2}} \]

<table>
<thead>
<tr>
<th>Winter survival</th>
<th>Yield</th>
<th>Heading date</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0.34</td>
<td>1.03</td>
</tr>
<tr>
<td>C2</td>
<td>0.53</td>
<td>-0.59</td>
</tr>
</tbody>
</table>

Influences on rate of gain

- Decreased accuracy as alleles (and genotypes) move toward fixation

- Decreased accuracy as population variation (genetic variance) and therefore heritability decrease

Conclusions and future directions

- Large effect markers are selected for indirectly
- Genomic selection can improve traits under selection
 - May require more cycles but ability to perform multiple cycles of selection per year regardless of field conditions compensates
 - Decreased accuracy over cycles contributes to decreasing rates of gain
- Need data on further cycles of selection
 - do trends continue?
 - do other traits under selection show improvement?

Acknowledgements

Committee
Kevin Smith
Rex Bernardo
Eric Watkins
Yang Da
Daniel Kaiser
Barley project
Ed Schiefelbein
Guillermo Velasquez
Karen Beaubien
Ahmad Sallam
Stephanie Navara
Vikas Vikram
Leticia Kumar
Tyler Tiede
Alexandrea Ollhoff
Lu Yin
Jeffrey Neyhart
Galen Thompson (Crookston, MN)
George Nelson (Morris, MN)

Collaborators
Pat Hayes
Alfonso Cuesta-Marcos
Shiaoman Chao
Gina Brown-Guedira
Jean-Luc Jannink
Stephen Baenziger

Oregon State University
USDA-ARS
University of Nebraska-Lincoln

USDA-ARS
USDA-ARS
USDA-ARS
Competing with soybeans

2013 US barley production

Model training

Influences on rate of gain

- Decreased accuracy over cycles of selection