First-year Undergraduate Scientific Research Experiences

Jim Burnette
Neil A. Campbell Science Learning Laboratory
Dynamic Genome Program
UCR

Early Research Experiences

• Make the textbook come to life
• Students participate in excitement of discovery
• Many studies show positive effect on STEM retention
• Students become excited about science (again).

Difficulties

• Often grant-cycle driven
• Integration into curriculum
 – Often add-on courses
• Faculty buy-in
 – Teaching credit
 – Expense
 – High activation barrier
• Expense
• Others...

Plug-and-Play Dynamic Genome Approach

1. Build it and they will come...
The Sandbox

Renovated Teaching Space
2. The Plug and Play model

Dynamic Genome Course
- 3 Hours per session twice per week
- 10 weeks
- 10 units credit – Replacement for long standing intro lab (5LA)
- 24 students/section

Two Parts
- 4 weeks of background — Common to all projects, taught by staff
- 1 week transition experiment — Provided and taught by faculty
- 4 weeks guided research project — Provided and taught by faculty

Course management, logistics, lab prep provided by staff
- Reduced buy-in from faculty
- Reduced time commitment

Weeks 1-4

- Background
 - Genetic Information Transfer
 - cDNA versus genomic DNA for Actin
 - DNA Sequence analysis (BLAST)
 - PubMed
 - Genome Polymorphism
 - PCR Amplification of maize gene from many strains
 - DNA Sequence analysis (MSA)
 - Goals
 - Improve background
 - Learn and master skills
 - Interpret data

Week 5

- Transition piece
 - Introduce organism
 - Introduce new techniques
 - Experimental design

- Plant Dynamic Genome
 - Transposable elements

Weeks 6-10

- Guided Research Project
 - Developed from research lab
 - Development guided by learning goals/objectives
 - Remember the end product is the student not the data
 - Objectives
 - Master experimental design and question
 - Master data analysis
 - Apply to other biological problems
 - Publishable data is a bonus
Example Projects

• Transposable elements (Burnette and Wessler)
 – Verification of new insertions
 – Methylation of near-by genes
• Phenotypic analysis and verification of TF Knock-outs in Neurospora
 transcriiion factor knock-outs
• Phenotypic analysis of RNAi knock-down in planaria and C. elegans.
• GPCR receptors in mosquito sperm
• ????

Program Evaluation

• Reduced buy-in
• Faculty are excited to “play”
• External evaluation on STEM retention ongoing
• Internal evaluation on value to students (Graduate School of Education)

Program evaluation

CURE

• Impact of ten-week course equivalent to 10 week summer REU (CURE survey) (Burnette and Wessler 2013)

Other “Plugs”

• CNAS Learning Communities
 – Adds research component
 – STEM career awareness
 – Further research opportunities
• Collaborations
• Outreach
• Greater Impacts

Difficulties Revisited

✓ Grant-cycle driven
✓ Course is funded multiple through “Greater Impacts” of research grants
✓ Lab Fee
✓ Integration into curriculum
 ✓ Equivalent credit for intro lab
✓ Faculty buy-in
 – Teaching what they love
 – Low Expense
 – Low activation barrier

Funding

Large, One-time
• Facility -- Donor and UCR
• Equipment – HHMI Professor grant and UCR

Low, On Going
• Supplies
 Lab Fee ($50)
 Great Impacts
• Salary for instructors
Synergies

• Grant support due in part to the Campbell Lab and DG Course

 ➢ NSF-STEP Grant: SL-Cure
 ➢ HHMI Institutional: SALSA
 ➢ USDA-HSI: DG Summer Scholars

DG Electronic Laboratory Notebook

DG ELN

• Free, open-source software
 — WordPress
 — MySQL
• All data included
• Accessed using Web Browsers
• FERPA compliant
• Collaborative
 — Graders provide quick feedback
 — Students share and study from each others entries

Thank You!

• Rochelle Campbell
• Susan Wessler
• Alex Cortez
• CNAS
• UCR