Grape LeafRoll-associated Virus: A systems biology approach to understand Plant-Pathogens interaction in fruit ripening

Amanda Vondras, Satyanarayana Gauthu, Albert Babashansky, Aaron Fait, Robert Martin, Laurent Deluc

Laurent Deluc
Department of Horticulture
Oregon State University

Symptomatology of the Grape Leafroll Disease

- In general, GLD symptoms do not appear until the crop advances toward the ripening onset.
- Disease with asymptomatic and symptomatic phases.
- Virus-host interactions modulated in a developmental stage-specific manner.

Biological consequences

- In leaf, changes in photosynthesis, carbohydrate metabolism, and flavonoid pathway (Gutha et al., 2010).

- In leaf, Nt photosynthesis and Chla fluorescence repressed during post-ripening stages (Endeshaw et al., 2014).

- In infected berries, dramatic alteration in the expression of photosynthesis, flavonoid and sugar transport-related genes (Expinosa et al., 2007, Vega et al., 2011).

Downstream Analyses:

Comparison 1

- NGS Sequencing - RNAseq approach through high definition mass spectrometry (Uniprot database)

Comparison 2

- MS Spectrometry - Unbiased Metabolomics

Objectives:

- In comparison # 1, we want to evaluate the impact of the infection on the transcriptional state at different times of the ripening.

- In comparison # 2, we want to determine the impact of the virus on the reduction of intra-cluster variability during the symptomatic period.

Economic impact of Grapevine Leafroll Disease

- Grape leaf roll disease (GLD) remains the most economically important viral disease across many wine-producing regions in the world.

- GLRD can have devastating effects on yield (up to 30-70% reduction) and grape quality (ripening delay, reduced accumulation of sugars, increased acidity, reduced tannin content and anthocyanin and undesirable flavor).

- Economic loss can range from $29,902 to $226,405/ha (Gomez et al., 2016).

Biology of Grapevine Leafroll-Associated Viruses

- Eleven viruses designated serially as GLRaV-1, -2, -3, etc.

- The taxonomy recognizes five GLRaV species in three genera (Ampelovirus, Clustrovirus, and Velirivirus).

- Several species of mealybugs and scale insects in the Ampelovirus. No vectors identified yet for GLRaV-2 and 7.

- Vast majority of genetic diversity were concentrated on the most economically important GLRaV-3.

Insights on the Host-Virus interactions:

- Virus-induced host RNA silencing and viral suppressors of host RNA silencing.

- Alteration of the host mRNA regulatory pathways:

 - In several crops, increasing evidence suggests that the virus infection triggers miRNAs production (Pradhan et al., 2015; Liu et al., 2015; Yin et al., 2013).

- Research questions:

 - What are the major mRNA regulatory pathways affected by GLRaV/5 during the symptomatic period and how it does affect the overall regulatory network and the resultant metabolites?

 - Is there an effect of the virus on the synchronicity of the transcriptional program (Gouthu et al., 2014)?

Experimental design

- Healthy plant
- Infected plant
- Green/Red berries
- Healthy/Infected within berries
- Healthy/Infected within stage

- High definition mass spectrometry - Unbiased metabolomics

- The red stage of RO tends to the most affected stages by the virus infection

- The viral infection tends to reorganize the transcriptional program of the berry.
3D clustering analysis (Gene-Condition-Time) using the (HP/IP) green berry experiment from comparison #1:

Examples of co-expression patterns

<table>
<thead>
<tr>
<th>Pattern</th>
<th>HP</th>
<th>IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>D</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>E</td>
<td>15</td>
<td>19</td>
</tr>
<tr>
<td>F</td>
<td>18</td>
<td>21</td>
</tr>
</tbody>
</table>

Interpretation:

- **Pattern A**: Co-expression patterns are reorganized in HP and IP (51%)
- **Pattern B**: Loss of the co-expression patterns in IP (12%)
- **Pattern C**: Induced co-expression patterns in IP (2%)
- **Pattern D**: Conserved co-expression patterns in HP and IP (16%)
- **Pattern E**: Constant patterns in HP and IP (19%)

Gene Ontology Enrichment Analysis (AMIGO2 - REVIGO - Cytoscape):

Remodeled co-expression patterns in HP and IP (51%)

- **Molecular Function (MF):**
 - Transcription activity
 - Acyl/Aminoacyl groups
 - Tetrapyrrole Binding

- **Cellular Component (CC):**
 - Chloroplast
 - Photosystem
 - Polysaccharide/glucosaminoglycan metabolism

Exploring Correlation-based Network using graph theory properties:

- Evaluating the influence of the virus on the overall topology of the transcriptional network
 - HP network: |r| > 0.9
 - IP network: |r| > 0.9

- The transcriptional network in IP is reorganized in a non-randomized way with the loss of "hubs" and the emergence of a new set of "hubs"

Gene Ontology Enrichment Analysis (AMIGO2 - REVIGO - Cytoscape):

Remodeled co-expression patterns in HP and IP (51%)

Use of the betweenness centrality as an indicator of a node's centrality in a given network.

- **Determine if the virus affects this parameter and therefore the topology of the network.**

<table>
<thead>
<tr>
<th>Small RNA pipeline:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(all small RNA libraries)</td>
</tr>
<tr>
<td>Keep reads 18-26 nt</td>
</tr>
<tr>
<td>Bowtie alignment to grape and GLRaV-3 genomes</td>
</tr>
</tbody>
</table>

Small RNAs landscape:

- **miRNA target prediction:**
 - PamREAP (modified for plants, courtesy of Jixian Pamela Green)

miRNA predictions:

- Filtering Step #1: 1. stringent RNA 2. imperfect alignments 3. > 20 alignments
- Filtering Step #2: 1. structural RNA 2. strand bias > 0.9 Abundance Bias > 0.7
- Filtering Step #3: 26 nt imperfect alignments

miRNA curated:

- miRNA target prediction
 - Origami (new miRNA in data)
 - Strand Bias > 0.9

miRNA target prediction:

- miREAP (modified for plants, courtesy of Jixian Pamela Green)

- UEA sRNA hairpin

- 630 predicted miRNA precursors; 52 known miRNA precursors

miRNA curated:

- 1976 predicted miRNA precursors; 91 known miRNA precursors

miRNA curated:

- 1/19/2016

If you need more information, visit poster 1129

Overall main network properties for HP
- Diameter: 13
- Density: 0.015
- Edges: 3,697
- Nodes: 457

Overall main network properties for IP
- Diameter: 13
- Cluster Coefficient: 0.34
- Edges: 4,651
- Nodes: 428

Top 10 in HP
- 1. Zeatin riboside
- 2. Zeatin
- 3. Glucosinolate
- 4. Glucosinolate precursor
- 5. Glucosinolate
- 6. Zeatin riboside
- 7. Zeatin
- 8. Glucosinolate precursor
- 9. Glucosinolate
- 10. Zeatin

Top 10 in IP
- 1. Zeatin riboside
- 2. Zeatin
- 3. Glucosinolate
- 4. Glucosinolate precursor
- 5. Glucosinolate
- 6. Zeatin riboside
- 7. Zeatin
- 8. Glucosinolate precursor
- 9. Glucosinolate
- 10. Zeatin

Other major affected and non affected co-expression patterns in HP and IP (43%):

- **BP**: Enrichment in phosphate metabolism, carbohydrates, monosaccharide metabolism
- **MF**: Enrichment in transcription factor activity
- **CC**: Enrichment in mostly chloroplast and Thylakoid part

Examples of co-expression patterns in HP and IP

- **Pattern A**: Co-expression patterns are reorganized in HP and IP (51%)
- **Pattern B**: Loss of the co-expression patterns in IP (12%)
- **Pattern C**: Induced co-expression patterns in IP (2%)
- **Pattern D**: Conserved co-expression patterns in HP and IP (16%)
- **Pattern E**: Constant patterns in HP and IP (19%)

Betweenness centrality

- **Determine if the virus affects this parameter and therefore the topology of the network.**

- **Overall main network properties for HP**
 - Diameter: 13
 - Density: 0.015
 - Edges: 3,697
 - Nodes: 457

- **Overall main network properties for IP**
 - Diameter: 13
 - Cluster Coefficient: 0.34
 - Edges: 4,651
 - Nodes: 428

- **Top 10 in HP**
 - 1. Zeatin riboside
 - 2. Zeatin
 - 3. Glucosinolate
 - 4. Glucosinolate precursor
 - 5. Glucosinolate
 - 6. Zeatin riboside
 - 7. Zeatin
 - 8. Glucosinolate precursor
 - 9. Glucosinolate
 - 10. Zeatin

- **Top 10 in IP**
 - 1. Zeatin riboside
 - 2. Zeatin
 - 3. Glucosinolate
 - 4. Glucosinolate precursor
 - 5. Glucosinolate
 - 6. Zeatin riboside
 - 7. Zeatin
 - 8. Glucosinolate precursor
 - 9. Glucosinolate
 - 10. Zeatin

Use of the betweenness centrality as an indicator of a node’s centrality in a given network.

- **Determine if the virus affects this parameter and therefore the topology of the network.**

Small RNA landscape:

- **Small RNA pipeline:**
 - (all small RNA libraries)
 - Keep reads 18-26 nt
 - Bowtie alignment to grape and GLRaV-3 genomes

- **Filtering Step #1:**
 - 1. stringent RNA
 - 2. imperfect alignments
 - 3. > 20 alignments

- **Filtering Step #2:**
 - 1. structural RNA
 - 2. strand bias > 0.9
 - 3. Abundance Bias > 0.7

- **Filtering Step #3:**
 - 26 nt imperfect alignments

miRNA predictions:

- **miRNA curated:**
 - UEA sRNA hairpin
 - 630 predicted miRNA precursors; 52 known miRNA precursors

- **miRNA target prediction:**
 - Origami (new miRNA in data)
 - Strand Bias > 0.9
 - Abundance Bias > 0.7

miRNA curated:

- **miRNA target prediction:**
 - Origami (new miRNA in data)
 - Strand Bias > 0.9
 - Abundance Bias > 0.7

If you need more information, visit poster 1129

Small RNAs landscape:

- **Small RNA pipeline:**
 - (all small RNA libraries)
 - Keep reads 18-26 nt
 - Bowtie alignment to grape and GLRaV-3 genomes

- **Filtering Step #1:**
 - 1. stringent RNA
 - 2. imperfect alignments
 - 3. > 20 alignments

- **Filtering Step #2:**
 - 1. structural RNA
 - 2. strand bias > 0.9
 - 3. Abundance Bias > 0.7

- **Filtering Step #3:**
 - 26 nt imperfect alignments
miRNAs-mRNAs inferred interactive in the correlation-based transcriptional network:

Overall Network in HP

First neighbors of 2 potential miRNA targets

Overall Network in IP

Knuckle-Protein (15)

SPL6 (104)

SPL6 (21)

Knuckle-Protein (79)

Conclusions:
• The effect of the virus on the transcriptome is berry stage specific.
• The effect of the virus on the reduction of the intracluster variability is marginal.
• 2/3 of the transcriptome DE during the ripening is re-routed to a different direction.
• Viral infection strengthens the transcriptional network in conjunction with changes in the nature of the major "hubs" responsible for the overall topology of the network.
• Induction of some miRNA targets affect the network topology by affecting the connectivity of "hubs" to their neighbors.

Perspectives:
• Improve and explore the use of graph-theory to identify relevant miRNA-mRNA interactors and develop new hypothesis with some functional validation experiments.
• Experimental step to confirm the Small RNA landscape.
• Run the "metabolome" side of the project in order to integrate these different layers of biological information.

Acknowledgment:
Amanda Vondras
Ph.D candidate
Transcriptome and Small RNA study

Bob Martin
Research Plant Virologist
CoPI in the project
Elisa Test

Satyanarayana Gouthu
Research Associate
Experimental Design
Small RNAs extraction

Aaron Fait
Associate Professor
University of Ben Gurion - Israel

Albert Batushansky
Postdoctoral Researcher
University of Ben Gurion - Israel

Oregon Wine Research Institute