21st Century Plant Breeding

What has the last decade seen?

- Consolidation: mergers, acquisitions, alliances.
- Centralisation of service functions.
- International expansion/aspect.
- Large companies have > access to supporting technology than smaller companies.

How will this evolve?

- Every tool in the box is needed if we are to cope with the food security "perfect storm".
- Should we expect the private sector to pay for it all from a seed royalty income of ~£35m pa?
- Can small players still succeed?
- Need to apply a new "toolkit" to support future crop productivity.

What’s in the current toolkit?

- Germplasm
- Phenotyping
- Yield, agronomics, quality
- Breeding systems
- Pedigree breeding
- Some predictive markers
- Some accelerated breeding

Led by skilful interrogation of phenotype

...and the new toolkit?

- Everything in the old toolkit PLUS
- Novel sources of variation
- Markers/trait dissection
- Population structures
- Accelerated breeding
- Hybrids
- Genomic selection
- Genetic modification
- Gene editing

Genomic Selection

Trait effects of all genes or chromosomal positions are estimated simultaneously without significance testing so there is reduced bias.

- Requires high marker density.
- Estimate a trait effect for every marker or interval.
- Statistical problem: more markers than individuals....
Genomic Prediction works half the time

Cross validation r

- NL / RL historical data 0.8
- old to new 0.2
- AxC mapping population 0.5
- low to high 0.2
- TG within countries 0.5
- between countries 0.3

In collaboration with Marco Scutari (Oxford)

Association mapping panel of 376 elite winter bread wheat varieties from northern Europe

Panel genotyped with ~3000 markers:
- 2712 genome-wide DArT markers
- SNP markers (Biogemma)
- Gene markers (Ppd, Rht, Vrn)

All methods predict on the basis of kinship to some extent

Each allele in each individual carries information about:
- QTL alleles in LD carried by the individual
- Genetic relationships with other individuals

Combining information

Differentially-penalised ridge regression (DiPR)

<table>
<thead>
<tr>
<th></th>
<th>Ave</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>DArT</td>
<td>0.65</td>
<td>0.37</td>
<td>0.73</td>
</tr>
<tr>
<td>10 candidate QTL</td>
<td>0.51</td>
<td>0.21</td>
<td>0.76</td>
</tr>
<tr>
<td>Pooled</td>
<td>0.65</td>
<td>0.37</td>
<td>0.74</td>
</tr>
<tr>
<td>Optimum</td>
<td>0.69</td>
<td>0.38</td>
<td>0.82</td>
</tr>
</tbody>
</table>

Bentley et al. (2014) TAG 127: 2619-2633
Genomic selection

“Phenomic” selection

Exploiting new diversity

“Phenomic” Selection

Genomic selection

“Phenomic” selection

Exploiting new diversity

Accessing new diversity

NIAB Breeder’s toolkit
http://www.niab.com/pages/id/419/Breeders_Toolkit
Exploiting new diversity

Re-synthesised wheat's have basic faults and no inherent values as varieties

BUT

Modern wheat and synthetic wheat are crossable, allowing incorporation of novel DD diversity

NIAB pre-breeding team

International genebanks

Marco Scutari (University of Oxford)

John Hickey, Gregor Gorjanic (Roslin)

Dave Laurie, Adrian Turner, Simon Griffiths (JIC)

WISP partners

University of Bristol Wheat Genomics

Keith Edwards, Sacha Allen

National Plant Phenomics Centre, IBERS