Functional genomics of poplar bioenergy phenotypes using a unique dosage variants population

Héloïse Bastiaanse, Matthew Zinkgraf, Courtney Canning, Isabelle Henry, Luca Comai, Andrew Groover

Poplar trees, a promising feedstock for biofuel

A useful feedstock
• One of the fastest growing tree in temperate regions
• High content of cellulose in wood
• Hybrid vigor and clonal propagation
• Grown in short rotation coppice systems

A model for forest tree species
• Full genome sequence assembly of Populus trichocarpa (Tuskan et al., 2006)

Gene Dosage and Ploidy Changes are Associated with Transgressive Phenotypes in Many Crops

Challenges in poplar breeding program
• Drought resistance
• High yield/coppicing response
• Suitable wood chemistry (high cellulose/low lignin content)

A powerful tool to investigate the genomics of Populus for biofuel production

• Creation of a dosage variants population in aneuploid Populus
 • >800 lines available in F1
• Gamma irradiation (100 grays) of pollen creates chromosomal breaks
• Karyotyping by sequencing reveals chromosomal composition

Gamma-irradiation results in insertions and deletions

- 800 genotypes available
- 50% carry lesions
 75% deletions / 25% insertions
Triplotids adds subtle variation to the dosage ratios

Gamma-irradiation results in insertions and deletions

Tree phenotyping in the field
- Planted in triplicate in the Institute of Forest Genetics, California
- About 600 irradiated genotypes (100 grays), and 56 non irradiated control genotypes

<table>
<thead>
<tr>
<th>Traits recorded</th>
<th>To be recorded next</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf development</td>
<td>Leaf phenology/senescence, leaf specific area, leaf color, petiole length, chlorophyll content, stomata density</td>
</tr>
<tr>
<td>Biomass production</td>
<td>Tree height, diameter, number/size of the branches, internode length, growth rate</td>
</tr>
<tr>
<td>Tree architecture</td>
<td>Angle of the branches, length, density</td>
</tr>
<tr>
<td>Wood characteristics</td>
<td>Fiber length, wood specific gravity, cellulose content, etc</td>
</tr>
</tbody>
</table>

Drought resistance screening

Pot experiment
- 10 liters pots
- About 120 genotypes in triplicate
- Presence of a great diversity of leaf morphologies
- Application of a moderate stress for a month + well watered control plants

Evaluation:
- Biomass production
- Leaf chlorosis, wilting, senescence, chlorophyll content
- Leaf temperature
- Relative leaf water content
- Infrared spectrometry indexes
- Stomata density

Gravibending response in the mutant population

In pots
- Screening of about 90 genotypes in triplicate
- Plants placed horizontal for one month
- Measurement of the height of the apex of curvature
- Wood sampling

G-layer formation in the tension wood
Gravibending response in the mutant population

Contrasting gravibending response and amount of tension wood produced

Tension wood characteristics
• Faster growth – cell division rate
• Longer fiber with extra gelatinous layer (G-layer)
• High cellulose/low lignin content

Changes in the patterning and morphology of the vessel elements

In the mutant
Most of the vessels elements are in groups >3
(up to 32 vessels in one group)
Vessels are 3.5 times narrower and contain more perforations

A tool for reverse and forward genetics

• Opportunities for reverse genetics

Example: influence of indels on a TAC1 poplar paralog (Chr14 at 8.02 Mbp)

<table>
<thead>
<tr>
<th>Insertion in a 2n and 3n background</th>
<th>Deletion in a 3n background</th>
<th>Deletion in a 2n background</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal to upright branches 4 genotypes</td>
<td>Upright branches – pillar tree 2 genotypes</td>
<td>Horizontal, weepy branches 4 genotypes</td>
</tr>
</tbody>
</table>

A tool for reverse and forward genetics

• Opportunities for forward genetics: dosage QTLs

Characterization of the relationships between quantitative phenotypes and dosage of specific genomic regions
Correlation analysis between the phenotypic data and bins along the chromosomes containing insertion and deletions:
- Detection of dosage sensitive genes only
- Possibility of trans-acting elements

Transcriptomic data analysis

• Investigate the regulatory consequence of dosage variations on gene expression

<table>
<thead>
<tr>
<th>Insertion</th>
<th>Deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>[123456]</td>
<td>[01]</td>
</tr>
<tr>
<td>Hybrid with indel mutations</td>
<td></td>
</tr>
</tbody>
</table>

• Investigate the altered connectivity in transcriptomic networks induced by indels and the impact on phenotypes

Conclusion

Our dosage mutant population of Populus:
• represents a new resource of important phenotypic variants for poplar

• Constitutes a unique resource for tree genomics:
 – Tool for reverse and forward genetics
 – Is instrumental in investigating the relationships between phenotype, gene dosage and gene expression
Acknowledgements

USDA Forest Service
Andrew Groover
Suzanne Gerttula
Matt Zinkgraf
Courtney Canning
Reginald King

UC Davis
Vladimir Filkov
Luca Comai
Isabelle Henry

University of British Columbia
Harry Bruner
Shawn Mansfield

These projects are supported by AFRI grant # 2011-67013-30062 and 2015-67015-22891 of the USDA National Institute of Food and Agriculture, and DOE Office of Science, Office of Biological and Environmental Research (BER), grants no. DE-SC0007183.