ALL THE BETTER TO EAT YOU WITH:
Identifying and characterizing digestive cysteine peptidases in Tribolium castaneum

Lindsey Perkin (lindsey.perkin@ars.usda.gov)
USDA, ARS, CGAHR, SPIERU, Manhattan, KS

T. castaneum as a pest
- Red flour beetle
- Feeds on stored products – wheat, cereals, flour
- Economic loss
- Phosphine fumigation is common
- Many populations are now resistant

Cysteine Peptidases in T. castaneum

- T. castaneum genome has 25 cysteine peptidases
- On chromosomes 3, 7, 8, 10
- Many types, including cathepsin L, B, O, and K

Main objectives
1. Distinguish digestive cysteine peptidase from non-digestive
 - Determine relative expression between feeding (adults and larvae) and non-feeding (egg and pupae) developmental stages
2. Digestive cysteine peptidase function
 - Knock down major gut peptidase
 - Monitor response of all digestive cysteine peptidases

Experimental design
RNA-seq

Results
Heat map

Extract RNA
polyA pull down (method)
cDNA
Ion Torrent PGM chemistry

Twelve cysteine peptidases are up-regulated in feeding stages. Of these, ten have multiple lines of evidence suggesting involvement in digestion. Seven have major role in digestion when on a normal diet. Previous biochemical study found seven enzymes in midgut, hypothesized for digestion (Vinokurov et al. 2009). Seven were up-regulated in responses to inhibitors. Two with low/no expression were further decreased in response to inhibitors. Candidates for pest control are constitutively expressed. Major digestive peptidases are candidates for pest control.

Main objectives

1. **Distinguish digestive cysteine peptidase from non-digestive**
 - Determine relative expression between feeding (adults and larvae) and non-feeding (egg and pupae) developmental stages

2. **Digestive cysteine peptidase function**
 - Knock down major gut peptidase
 - Monitor response of all digestive cysteine peptidases

Cysteine Peptidases in *T. castaneum*

- Microarray - inhibitors

Tribolium castaneum compensates for loss of cysteine peptidase activity when fed inhibitors through differential regulation of cysteine peptidase genes.

Cysteine Peptidases in *T. castaneum* Microarray - inhibitors

- Microarray - inhibitors

Tribolium castaneum compensates for loss of cysteine peptidase activity when fed inhibitors through differential regulation of cysteine peptidase genes.

Method for knockdown

RNA interference

Katherine Aronstein, Brenda Oppert and Marce ́D. Lorenzen (2011). RNAi in Agriculturally Important Arthropods, RNA Processing, Prof. Paula Grabowski (Ed.)

Experimental design

- Target different sections of LOC659441: 3′, middle, 5′, entire gene region
- Controls: non-injected, mock-injected, ADC

RNA-seq: Not dependent on gene specific primers & can get global analysis of differentially expressed genes
Results

Off-target knockdown

Results

Over-represented GO terms

Molecular Function:
Serine-type endopeptidase activity
p=4.5e-6

Molecular Function:
Cysteine peptidase activity
p=4.5e-6

Biological Process:
Proteolysis p=1.41e-10

Up-regulation of serine peptidases in the posterior midgut

Summary

Anterior midgut
pH 5.0 - 6.0
85% cysteine activity, 15% serine peptidases

Midgut
pH 6.0 - 7.0
20% prolyl oligopeptidase activity

Posterior midgut
pH 7.0 - 7.5
75% cysteine, 25% serine peptidases

Acknowledgements

Brenda Opper
Ken Friesen
Kathy Leonard

T. Morgan