Harnessing the Microbiome for Agricultural Sustainability In Bioenergy-based systems

Kelly D. Craven
The Samuel Roberts Noble Foundation
PAG Meeting
1/13/2016

"We know more about the movement of celestial bodies than about the soil underfoot." ~ Leonardo da Vinci

"We might say that the earth has the spirit of growth; that its flesh is the soil." ~ Leonardo da Vinci

... the Latin name for man, homo, derived from humus, the stuff of life in the soil." ~ Dr. Daniel Hillel

Your Microbes, Your Health
Plant Microbes, Plant Health

Some plant-microbe symbioses are very conspicuous!

Volume 486 Number 7402
pp 157-286
14 June 2012

Some plant-microbe symbioses are very conspicuous!
Symbiosis for Sustainability Group

Rationale: Plants depend on different types of symbionts in all natural environments, especially challenging ones (i.e. nutritionally deficient soils, extreme temps, etc).

Overarching goal: Find new symbiotic microbes to promote plant growth under a low-input strategy or other challenging environment(s)

"**Optimize the Plant Phytobiome**"

Basic Science

- Omics approaches
- Microscopy and growth tests
- Simplified community analysis
- Modeling

Application

- Trait identification
- Compatibility assessment
- Greenhouse/field studies
- Delivery methodology

"A matter of scale"

In vitro → greenhouse → field

- *In vitro* microbial assays necessary for high throughput screening of potentially beneficial microbes
- *In vitro* association studies (plant + microbe) necessary to study nature of infection via microscopy
- *Greenhouse* studies necessary to control number of variables
- *Field* studies to transition from one-on-one relationships to multi-trophic, ecosystem-like scenarios

"Improve greenhouse to field congruency"

Switchgrass (Panicum virgatum): A Promising Bioenergy Crop

Cellulosic Bioenergy Crops

Publication Diagram

Figure Description

Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. (Reference: [source](http://example.com))
Switchgrass (*Panicum virgatum* L.)

- Native C₄ perennial
- High nutrient use efficiency
- Shoot biomass can reach 40 dry Mg/Ha
- Root biomass can reach 8 dry Mg/Ha; excellent carbon sink & erosion control
- Can be grown on marginal, nutritionally depleted lands under a low-input strategy

Switchgrass as a model for low-input agriculture

Switchgrass endophytic microbes

- 3 yr survey from native tallgrass prairie and other varied habitats
- Collections in early late April (establishment), July (peak) and early November (senescence)
- Approx. 700 fungal and 800 bacterial endosphere isolates obtained in pure culture from sterilized root and shoot tissues
- Identified by 16S (bacteria) or 18S+ITS (fungi)

Switchgrass endophytic microbes

Sampling Site: Tall Grass Prairie in Northern Oklahoma

~450 plants were collected

Soil analysis results

<table>
<thead>
<tr>
<th>Field ID</th>
<th>pH</th>
<th>OM (%)</th>
<th>P (ppm)</th>
<th>K (ppm)</th>
<th>Ca (ppm)</th>
<th>Mg (ppm)</th>
<th>Na (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01S</td>
<td>7.4</td>
<td>6.3</td>
<td>129</td>
<td>845</td>
<td>225</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>01S</td>
<td>6.1</td>
<td>4.2</td>
<td>6</td>
<td>189</td>
<td>3942</td>
<td>514</td>
<td></td>
</tr>
<tr>
<td>01S</td>
<td>6.9</td>
<td>5.1</td>
<td>10</td>
<td>461</td>
<td>356</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>01S</td>
<td>7.6</td>
<td>3.1</td>
<td>8</td>
<td>156</td>
<td>968</td>
<td>546</td>
<td></td>
</tr>
<tr>
<td>01S</td>
<td>7.6</td>
<td>3.7</td>
<td>10</td>
<td>430</td>
<td>3970</td>
<td>590</td>
<td></td>
</tr>
<tr>
<td>01S</td>
<td>7.5</td>
<td>4.8</td>
<td>9</td>
<td>390</td>
<td>7895</td>
<td>1310</td>
<td></td>
</tr>
<tr>
<td>01S</td>
<td>7.8</td>
<td>4.6</td>
<td>6</td>
<td>424</td>
<td>11078</td>
<td>616</td>
<td></td>
</tr>
<tr>
<td>01S</td>
<td>7.0</td>
<td>4.2</td>
<td>6</td>
<td>124</td>
<td>10026</td>
<td>408</td>
<td></td>
</tr>
<tr>
<td>01S</td>
<td>7.7</td>
<td>4.4</td>
<td>6</td>
<td>748</td>
<td>7956</td>
<td>518</td>
<td></td>
</tr>
<tr>
<td>01S</td>
<td>6.0</td>
<td>3.1</td>
<td>6</td>
<td>220</td>
<td>7720</td>
<td>244</td>
<td></td>
</tr>
<tr>
<td>01S</td>
<td>7.7</td>
<td>3.2</td>
<td>6</td>
<td>466</td>
<td>8780</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>01S</td>
<td>7.7</td>
<td>6.1</td>
<td>10</td>
<td>134</td>
<td>7484</td>
<td>278</td>
<td></td>
</tr>
<tr>
<td>01S</td>
<td>7.0</td>
<td>4.3</td>
<td>6</td>
<td>107</td>
<td>6312</td>
<td>1300</td>
<td></td>
</tr>
<tr>
<td>01S</td>
<td>7.2</td>
<td>5.8</td>
<td>156</td>
<td>1328</td>
<td>6880</td>
<td>718</td>
<td></td>
</tr>
<tr>
<td>01S</td>
<td>6.8</td>
<td>2.8</td>
<td>60</td>
<td>136</td>
<td>2720</td>
<td>274</td>
<td></td>
</tr>
<tr>
<td>01S</td>
<td>8.2</td>
<td>7.0</td>
<td>5</td>
<td>192</td>
<td>7957</td>
<td>1320</td>
<td></td>
</tr>
<tr>
<td>01S</td>
<td>7.0</td>
<td>1.5</td>
<td>34</td>
<td>140</td>
<td>1282</td>
<td>258</td>
<td></td>
</tr>
<tr>
<td>01S</td>
<td>8.0</td>
<td>4.1</td>
<td>14</td>
<td>108</td>
<td>7760</td>
<td>570</td>
<td></td>
</tr>
<tr>
<td>01S</td>
<td>7.7</td>
<td>1.1</td>
<td>16</td>
<td>132</td>
<td>845</td>
<td>206</td>
<td></td>
</tr>
<tr>
<td>01S</td>
<td>8.5</td>
<td>1.4</td>
<td>12</td>
<td>189</td>
<td>462</td>
<td>480</td>
<td></td>
</tr>
<tr>
<td>01S</td>
<td>8.2</td>
<td>1.8</td>
<td>10</td>
<td>134</td>
<td>5734</td>
<td>1095</td>
<td></td>
</tr>
<tr>
<td>01S</td>
<td>6.3</td>
<td>2.9</td>
<td>28</td>
<td>302</td>
<td>1484</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>01S</td>
<td>7.3</td>
<td>2.4</td>
<td>25</td>
<td>106</td>
<td>5115</td>
<td>403</td>
<td></td>
</tr>
<tr>
<td>01S</td>
<td>8.4</td>
<td>2.0</td>
<td>24</td>
<td>118</td>
<td>3950</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>
Experimental Procedure

- **Switchgrass**
- Root / Shoot
- Pots/Greenhouse
- NF Field
- Metagenomics
- Fungi
- Bacteria
- 16S sequencing
- Screening for beneficial characteristics
- Phosphate solubilizing
- ACC deaminase
- NO Field
- Evaluation of Plant growth promotion

Fungi: excised root/shoot bits plated directly

Bacteria: root tissue ground in H_2O and plated in serial dilution

Regional Distribution of Bacterial Isolates

- **Ave. 4.9 isolates**
- **Ave. 3.2 genus**

Phosphate Solubilizing Bacteria

- **Bacterial single colonies**
- **Rich medium (step)**
- **Stress by centrifugation**
- **1:10 dilution with LB medium**
- **Dip 3 µl of cell suspension to PVK media**
- **Incubated for 96 hrs, 25°C, dark**
- **Measuring phosphate solubilizing activity**

Taxonomic configuration of cultivable bacteria

- Pseudomonas 55%
- Sphingomonas 3%
- Enterobacter 3%
- Burkholderia 4%
- Xanthomonas 4%
- Stenotrophomonas 4%
- Klebsiella 5%
- Bacillus 6%
- Rhizobium 6%

High-throughput ACC Deaminase Assay

- **Standard reaction (ACC 0 – 500 uM)**
- **Methionine**
- **SAM synthase**
- **ACC synthase**
- **ACC oxidase**
- **ACC deaminase**

56 positive out of 551 samples
NifH detection

Total nifH positives: 77

- **Rhizobia**, positive control (+)
- **E. coli**, negative control (-)

<table>
<thead>
<tr>
<th>Isolates</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhizobium sp.</td>
<td>8</td>
</tr>
<tr>
<td>Pseudomonas sp.</td>
<td>44</td>
</tr>
<tr>
<td>Bacillus</td>
<td>3</td>
</tr>
<tr>
<td>Alpha proteobacterium</td>
<td>4</td>
</tr>
<tr>
<td>Burkholderia</td>
<td>2</td>
</tr>
</tbody>
</table>

6 strains ACC/phosphate sol. + *Burkholderia* strain is positive for all three traits.

Acetylene reduction assay with plants grown in Turface-vermiculite mixture

- **Turface**: vermiculite mixture
- **Ethylene production**
- **Soil drench with 5 ml bacteria dissolved in fertilizer (OD 0.05)**

Taxonomic Configuration of Beneficial Bacteria

- **Total 526 ACC**
- **45 NifH**
- **25 Phosphate**

- **Pseudomonas**: 76%
- **Burkholderia**: 24%
- **Rhizobium**: 6%
- **Bacillus**: 6%
- **Klebsiella**: 5%
- **Stenotrophomonas**: 4%
- **Xanthomonas**: 4%
- **Burkholderia**: 4%
- **Enterobacter**: 3%
- **Sphingomonas**: 3%
- **Variovorax**: 1%

Ongoing research

Genomes of approx. 176 endophytic bacteria of switchgrass have been completed (JGI)

- Comparative genomics (ORNL) to look for commonalities between like phenotypes.

Comparison of culturable vs. non-culturable microbe populations

- Targeted isolation

Fluorescent tagging of promising strains underway

Greenhouse trials initiating “5 best” test: P-solubilizers/N-fixers/ACC deaminase producers

And then there are the fungi…
Symbiotic “consortia” for low-input agriculture

Hormone producing foliar bacteria
Defensive metabolite producing foliar fungus
Nitrogen-fixing root bacterium
Nutrient-solubilizing mycorrhizal fungus

My Lab
Sita Ghimire (ILRI-Nairobi)
Myoung-Hwan Chi
Kaustav Bandypadhyay
Nikki Charlton
Jeremy Bell
Haiyan Li
JoHanna L’Hereux

Collaborators
Michael Udvardi (Noble)

Joint Genome Institute