Introduction

- Design and deliver an introductory Bioinformatics and Computational Biology (BCBio) undergraduate course at Iowa State University (ISU) with a Modified Moore Method (M^3)
- Small class (<20 students)
- Students from mostly biological backgrounds
- Instructors with both computational and biological experiences
- M^3 has been used almost entirely for teaching mathematics in the past and is an approach towards inquiry-based learning (IBL)

Course Content

- Introduction to bioinformatics
 - Genomics Subject Matter
 - Genome Sequencing & Assembly
 - Structural & Functional Annotation
 - Comparative Genomics
- Development of practical skills
 - Basic Programming and Scripting
 - Data Discovery
 - Data Management
 - Data Transmogrification
 - General Problem Solving

Ultimately…

- Avoid this…

Modified Moore Method

- Treat a pair of students as a single unit
- Students will turn in exercise solutions prior to attending class
- Students will receive a point for showing up, but will only earn additional points for presenting
- Grade based on:
 - Exercises (75 points)
 - Midterm (30 points) and Final (30 points) Exams
 - Final Presentation (30 points)
 - Attendance (10 points)
Modified Moore Method (cont.)

- IBL – Inquiry Based Learning
 - Teaching through solving questions
 - “Flipped Classroom” – students lead the course through presentation of solutions
 - “Moore Method” – first used by R.L. Moore when teaching math courses at UT Austin
- Bottom Line – No lectures; instructors provide questions in advance and guide students during class

Sample Exercise Question:
Assuming the above transition matrix, what is the probability of reaching node c starting from node b in exactly 100 steps?

Example Homework

7. If the current nucleotide in the sequence is A, what will be the next nucleotide? Let the probability be p_{AC}. Develop a transition matrix for this. What is the probability of transitioning from A to C?

8. If the current nucleotide in the sequence is a random nucleotide, what will be the next nucleotide? Let the probability be p_{AC} for A to C, p_{AG} for A to G, p_{AT} for A to T, p_{CG} for C to G, p_{CT} for C to T, and p_{GT} for G to T. Write the transition matrix for this. What is the probability of transitioning from A to C, given that the current nucleotide is a random nucleotide?

9. What is the probability of reaching node c starting from node b in exactly 100 steps? (I do not know how to answer this.)

Results

- Student Survey Data

 - Data Discovery: 100%
 - Data Management: 100%
 - Data Transmogrification: 100%
 - Genomics Subject Matter: 100%

Lessons Learned

- Student pairing was not a good idea since there was no diversity in background
- Successful teaching programming to biological students with minimal programming background
 - Course format enabled more engagement to material and more creative solutions
 - Textbook: Practical Programming for Biologists
- Some students prefer the course to be reordered:
 - Current order: Programming -> Application
 - New order: Programming taught as application occurs

- Common issues with an IBL courses: What to do when student gets stuck on the board?
 - Break down into smaller questions
 - Pause & return
 - Whole class solve together
- Benefits of IBL courses
 - Closing the gap (both gender and race)
 - Interactions reduces prejudices from both instructor and students (self and peer)
 - Deeper mastery of material
Final Thoughts

- Beware of “MOOC”
 - Massive
 - Open
 - Online
 - Courses
- “Strategic Liability”
- “Professional Misconduct”

Acknowledgements

- Carolyn J. Lawrence-Dill
- James L. Cornette
- Drena L. Dobbs
- Susan J. Lamont

Educational Advancement Foundation

United States Department of Agriculture
National Institute of Food and Agriculture