The role of myostatin on the conformation and gaits of the Icelandic horse

The Icelandic Horse
- Robust, compact and muscular horse with sloping croup and long, thick mane and tail
- Traditionally used for long distance riding and as pack horses
- No introduction of genetic material since 900 AD in the Icelandic population
- Additional gaits: tölt and pace, two highly selected traits within this breed

The Icelandic horse
- Conformation
 - Complex trait
 - Influenced by many genes
 - Scored subjectively
 - Large environmental effect
 - Genetic background: $0.15 < h^2 < 0.67$

Myostatin
- Recent studies have shown the influence of myostatin (MSTN) on racing performance and body composition
- ECA 18, reverse strand, 66,490208 - 66,495,180
- Repressor in development and regulation of differentiation and growth of skeletal muscle
- Loss-of-function mutations in dogs, cattle, sheep, mice, and humans
- In horses regulatory variants can lead to differences in skeletal muscle mass
- Role in the development of adipocytes and osteocytes
- Regulation of energy homeostasis

Objective
- Investigate the influence of MSTN variants on specific conformation and performance traits in a non-racing breed
Material & Methods

EBVs for 16 traits of 195 Icelandic horses were available
Accuracy ≥ 70%
11 conformation and 5 performance traits

Results & Discussion

Frequency of the C allele for SNP PR3737 = 0.01
Previously associated with fast twitching muscle
→ traditional use as mounts over long distances and pack animals

Results & Discussion

High intensity of carrying adult riders → strength and stamina
Effect on locomotion through influence of MSTN on conformation and muscle development
Effect on muscle fibre type may play a supporting role

Results & Discussion

Genotype GG poorer scores than homozygous AA
Also found in Italian Heavy Draft horses

Results & Discussion

Suggests favourable effect on form as well as function
→ Balance between visual standards and capability of sustaining speed with a rider
Results & Discussion

<table>
<thead>
<tr>
<th>STS</th>
<th>p-value</th>
<th>STS</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neck, withers and shoulders</td>
<td>0.03</td>
<td>Neck, withers and shoulders</td>
<td>0.02</td>
</tr>
<tr>
<td>Total conformation</td>
<td>0.05</td>
<td>Leg stance</td>
<td>0.01</td>
</tr>
<tr>
<td>T0k</td>
<td>0.07</td>
<td>Hooves</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Possibly through known effect of MSTN on non-muscle cells

Heavily muscled horse → appearance of more clearly separated front legs

Influence in Icelandic horses on use of horse for riding or meat production

G allele had positive effect on fleshiness in Italian Heavy Draft horses

Conclusion

MSTN may play a role in the complex background of several breeding goal traits in the Icelandic horse

Further analysis in non-racing breeds to decipher specific mechanisms by which the different variants influence conformation and riding ability in horses.

Acknowledgements

Swedish Research Council (VR)
Swedish Research Council Formas
Carl Trygger Foundation to GL
JUMO grant from KU Leuven (Jumo/15/025)

Images from Flickr under creative common license © Dagur Brynjolfsson, Jonathan, Tanja Rott, Johan Barrot, Neil D'Cruze and Kathysierra