Next up, capture-specific considerations for

Start by considering your targets

Targets inform sonication, size-selection, and sequencing protocol
Library preparation

- sticky-end (Illumina®)
- blunt-end (Torrent®, dDNA)
- transposase (Nextera®)
- ssDNA (aDNA, Swift Bio)

 Ultimately:

- DNA input to library – maximize
- Library amplification – moderate
Capture materials

- Libraries
- Baits (+ hybridization & wash kit)
- Streptavidin-coated magnetic beads
- Magnetic rack

Capture materials considerations

- MYcroarray
- Water bath or hybridization oven
- Thermal cycler (×2)
- Low-bind PCR tubes (Axygen™)
- recc: Heat block, multi-channel pipettor

Library input to capture – 100-500 ng (14 - 72 ng/µL in 7 µL)

Multiplexing – up to 2 µg total per rxn

Choosing time & temperature

- Majority of projects:
 - 65°C temperatures (hyb, bind, wash)
 - Overnight hybridization
- Very rare and/or degraded templates:
 - 55 to 65°C temperatures
 - 24-72 hour hybridizations

Multiplexing – careful with your index combos!
Budgeting – DNA to enriched library

<table>
<thead>
<tr>
<th>Step</th>
<th>Materials</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>gDNA extraction</td>
<td>$10</td>
<td>0.5 days</td>
</tr>
<tr>
<td>sonication / size-selection</td>
<td>$10</td>
<td>1 day</td>
</tr>
<tr>
<td>library preparation</td>
<td>$50</td>
<td>1 day</td>
</tr>
<tr>
<td>capture – bait kit</td>
<td>$150</td>
<td>2 days</td>
</tr>
<tr>
<td>capture – magbeads</td>
<td>$10</td>
<td>-</td>
</tr>
<tr>
<td>capture – reamplification</td>
<td>$5</td>
<td>-</td>
</tr>
<tr>
<td>library quantification</td>
<td>$5</td>
<td>0.5 days</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$240/sample</td>
<td>5 days (70 samples)</td>
</tr>
</tbody>
</table>

How should I sequence?

MYcroarray

- Protocol: how long of reads?
 - Consider library insert size – point to long PE?
 - Consider target type – SNPs, flanks, or contigs?

MYcroarray

- Depth - three important numbers:
 - Size of target
 - Required coverage depth
 - Expected % on target

How deep to sequence?

MYcroarray

- required reads =
 - target length
 + read length
 × X coverage desired
 + expected % on-target
 + expected % unique

Measuring success

MYcroarray

- **Specificity** (meas: % reads on-target)

MYcroarray

- **Sensitivity** (meas: library complexity)

[Diagram showing Mapped reads and Unique mapped reads vs. Sequencing depth]
Project Design & Troubleshooting

Contact us!

http://crossroads.uni-koeln.de/images/neb.jpg

https://www.kapabiosystems.com/assets/logo.png

https://www.diagenode.com/img/product/reagents/diamag02.png

http://tools.thermofisher.com/content/dit/prodimages/high/65001_650x600.jpg

http://www.alpaqua.com/Portals/0/Images/Magnet%20Plates/MP021-260x140.jpg

http://www.clker.com/clipart-epipendorf-tube.html