Mapping of botrytis resistance in gerbera & validation of Candidate genes

Paul Arens, Yiqian Fu, Richard Visser
PAG 2017

Introduction

Gerbera hybrida

• G. jamesonii & G. viridifolia

• abundance of colours, sizes and shapes
• outbreeding crop
• highly heterozygous diploid (2n=50)

Gerbera grey mould

• Caused by Botrytis cinerea
• The symptom of Botrytis infection on Gerbera
• High humidity situation

Phenotyping

• inoculated Botrytis spore
 ✓ Visual (whole flower)
 ✓ Bottom
 ✓ Petal
• 48hpi, RT, 100%rh
• Scored 0~5

QTL mapping for Botrytis resistance

Selected two populations from 20 cross populations

• S_pop: SP1:PS × SP2:CK
 276 offspring

• F_pop: FP1:KK × FP2:LL
 276 offspring

Disease scores
Marker development: EST-SNPs

Marker selection from RNA-seq data

- Selection over both populations
 - Specific SNPs - polymorphic between parents
 - Common SNPs - polymorphic in two populations

- Genotyping
 - 677 SNP markers for S-pop
 - 675 SNP markers for F-pop
 - 477 common markers
 - Genotyping success 70%, diploid segr.

Overview of all linkage groups:

\[S1=30 \] S_1G=23 \[S2=29 \] F1=27 \[F_1G=20 \] F2=28

QTL found for visual, bottom and petal in two populations

<table>
<thead>
<tr>
<th>QTL</th>
<th>Parents</th>
<th>Flanking Markers</th>
<th>LG</th>
<th>MQM</th>
<th>LOD % expl (GW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBP1</td>
<td>SP1</td>
<td>WGC11243_647_S2F1a</td>
<td>2</td>
<td>4.4 (4.0)</td>
<td>6.3</td>
</tr>
<tr>
<td>SBP2</td>
<td>SP1</td>
<td>WGC2476_271_S1</td>
<td>16</td>
<td>4.6 (4.0)</td>
<td>6.6</td>
</tr>
<tr>
<td>SBP3</td>
<td>SP2</td>
<td>WGC18733_346_S2F</td>
<td>11</td>
<td>4.6 (4.1)</td>
<td>7.6</td>
</tr>
<tr>
<td>SBP4</td>
<td>FP1</td>
<td>WGC16204_523_S2F1</td>
<td>1</td>
<td>6.8 (4.0)</td>
<td>10.3</td>
</tr>
<tr>
<td>SBP5</td>
<td>FP1</td>
<td>WGC28102_213_S2F1</td>
<td>9</td>
<td>4.5 (4.0)</td>
<td>7.5</td>
</tr>
<tr>
<td>SBP6</td>
<td>FP2</td>
<td>WGC18158_119_F1b</td>
<td>9</td>
<td>4.8 (3.9)</td>
<td>8</td>
</tr>
<tr>
<td>SBP7</td>
<td>FP1</td>
<td>WGC17798_117_S2F1</td>
<td>7</td>
<td>5.3 (4.0)</td>
<td>8.9</td>
</tr>
<tr>
<td>SBP8</td>
<td>FP2</td>
<td>WGC22343_292_SFa</td>
<td>5</td>
<td>6.5 (4.1)</td>
<td>8.6</td>
</tr>
<tr>
<td>SBP9</td>
<td>FP2</td>
<td>WGC35370_146_S2F1</td>
<td>6</td>
<td>4.6 (3.9)</td>
<td>6.6</td>
</tr>
<tr>
<td>SBP10</td>
<td>FP2</td>
<td>WGC16204_523_S2F1</td>
<td>1</td>
<td>6.8 (4.0)</td>
<td>10.3</td>
</tr>
<tr>
<td>SBP11</td>
<td>FP2</td>
<td>WGC18158_119_F1b</td>
<td>9</td>
<td>4.8 (3.9)</td>
<td>8</td>
</tr>
<tr>
<td>SBP12</td>
<td>FP1</td>
<td>WGC28102_213_S2F1</td>
<td>9</td>
<td>4.5 (4.0)</td>
<td>7.5</td>
</tr>
<tr>
<td>SBP13</td>
<td>FP2</td>
<td>WGC7520_3774_S1F2</td>
<td>15</td>
<td>4.9 (4.0)</td>
<td>7.9</td>
</tr>
<tr>
<td>SBP14</td>
<td>FP2</td>
<td>WGC6074_441_S2F</td>
<td>18</td>
<td>4.0 (4.0)</td>
<td>5.7</td>
</tr>
<tr>
<td>SBP15</td>
<td>FP2</td>
<td>WGC9226_226_F2</td>
<td>21</td>
<td>4.75 (4.0)</td>
<td>8.0</td>
</tr>
<tr>
<td>SBP16</td>
<td>SP1</td>
<td>WGC1044_660_S1, WGC33030_228_S</td>
<td>11</td>
<td>4.8 (4.0)</td>
<td>7.3</td>
</tr>
<tr>
<td>SBP17</td>
<td>SP1</td>
<td>WGC407_4995_S1F1</td>
<td>23</td>
<td>5.3 (4.0)</td>
<td>8.2</td>
</tr>
<tr>
<td>SBP18</td>
<td>SP2</td>
<td>WGC18733_346_S2F</td>
<td>11</td>
<td>5.2 (4.1)</td>
<td>8.6</td>
</tr>
<tr>
<td>SBP19</td>
<td>FP1</td>
<td>WGC1084_721_F</td>
<td>23</td>
<td>6.8 (4.1)</td>
<td>11.1</td>
</tr>
<tr>
<td>SBP20</td>
<td>FP2</td>
<td>WGC5962_1153_F</td>
<td>17</td>
<td>5.6 (4.0)</td>
<td>8.3</td>
</tr>
<tr>
<td>SBP21</td>
<td>FP2</td>
<td>WGC22447_285_Fb</td>
<td>23</td>
<td>7.6 (4.0)</td>
<td>11.4</td>
</tr>
</tbody>
</table>

Candidate gene approach

- Many CG described (~60 currently)
 1. Find the homologous gene in gerbera

CGs approach

Many CG described (~60 currently)
1. Find the homologous gene in gerbera
2. Look for SNP in gerbera homolog CG
• develop SNP marker

3. Mapping CGs in gerbera populations
29 mapped

14 CGs show statistically significant difference.

<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Hit</th>
<th>F1/F2</th>
<th>CM</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>WGC8244_216_S2F2</td>
<td>0.0</td>
<td>F1, F2</td>
<td>0.025</td>
<td>0.025</td>
</tr>
<tr>
<td>WGC18664_326_S2F2</td>
<td>19.5</td>
<td>F1, F2</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>PG1_15001_1052</td>
<td>******24.4</td>
<td>F1, F2</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>WGC2056_191_F</td>
<td>32.6</td>
<td>F1, F2</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>WGC9226_226_F2</td>
<td>33.6</td>
<td>F1, F2</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>WGC3424_72_S2F1</td>
<td>36.2</td>
<td>F1, F2</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>WGC8809_433_S2F1a</td>
<td>***40.8</td>
<td>F1, F2</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>WGC4151_332_S2F</td>
<td>***50.5</td>
<td>F1, F2</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>WGC35409_177_F</td>
<td>***50.5</td>
<td>F1, F2</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>WGC19051_337_F</td>
<td>46.7</td>
<td>F1, F2</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>WGC7759_664_F</td>
<td>*46.8</td>
<td>F1, F2</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>WGC9202_285_F</td>
<td>46.8</td>
<td>F1, F2</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>WGC19322_269_S2F1a</td>
<td>47.1</td>
<td>F1, F2</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>WGC20761_143_S2F2</td>
<td>*47.3</td>
<td>F1, F2</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

PETAL
0
5
F2_21

SCAR from agro-
infiltration by scratching

VIGS experiment

Silencing

29 candidate genes were mapped.

4. Look for co-localisation
• Mapping of CG improved QTL mapping
 ● Shift of QTL peak e.g. for PG1
 ● Addition of other QTL

Co-localization with QTLs

WAGENINGEN
groent & natuurwetenschappen

PG21

candidate gene from test of

SS SS_5198_1668 SP1 bottom
AO AO_19807_6510 FP1
PG2 PER62 PER62_31923_540 FP2
PG1 PG1_15001_1052 FP2
CH1 CH1_22447_285 FP1
Silencing

- Differences between parents in PDS silencing response both in bleaching as in silencing transcription
- SP1 and SP2 show bleaching, FP1 seems unresponsive

Lesion size

- Lesion sizes smaller in SP1, SP2

Summary

- Detected several QTL for Botrytis resistance from visual, bottom and petal.
- Mapped CGs related to Botrytis resistance
- Co-localised CG are upregulated upon infection
- VIGS indicate possible functional role in resistance
- Allelic variation being assessed on F2 plants

Thanks to:
- Schreurs Holland BV
- Florist Holland BV
- Alex van Silfhout
- Arwa Shahin
- Jaap van Tuyl
- Yin Song
- Wen Fang
- Jan van Kan
- TTI Green Genetics (3CFL030RP)

QUESTIONS?