Break assembly at all N gaps and reassemble based on chromatin contacts

High Quality Orientation: increases from 84 to 91.3%

- Final pseudo chromosome assembly:
 - Contigs: 915
 - Total length: 405.3 Mb
 - N50 contigs: 24.1 Mb
 - L50 scaffolds: 3
 - N50 scaffolds: 3048
 - N50 config: 404,432

Rescaffolding Call back statistics
- Cluster recall: 99.9%
- Order recall (HQ)**: 94.1%
- Orientation recall (HQ): 94.9%

Comparison of the clustering, ordering and orientation of clusters from the 1st N50 assembly to the final PGA assembly:
- % of predicted chromosome length:
 - N50 contigs: 93% of predicted chromosome length
 - N50 scaffolds: 92% of predicted chromosome length

How complete are the pseudo chromosomes?

- Number of Bionano physical maps and total aligned length for each assembly:

<table>
<thead>
<tr>
<th>Assembly</th>
<th>Total (Univ)</th>
<th>Total (Ori)</th>
<th>Total (Order)</th>
<th>Total (Orientation)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.41 Gb</td>
<td>2.88 Gb</td>
<td>2.71 Gb</td>
<td>2.64 Gb</td>
</tr>
</tbody>
</table>

Validation—Genotyping by Sequencing

- Bi-parental recombinant introgression population (n=96 RILs)

Sub-genome Identification

- Partial Chr10 fusion chromosome

Bionano Genome Map Validation

- A 17x coverage Bionano Genomics physical map was assembled into 427 physical maps and compared to the different sequence assemblies.

Utility: Linkage mapping of betalain locus

- Hamblin et al. (2012 & 2013)

- Sub-genome Synteny

- Dahl et al. 2014

- Think about A. cruentas (2n=34)

- a19 is the basic chromosome number for the family — So how do you go to 2n=32?

Sub-genome Synteny

- Genes within the betalain gene family vary in chromosome numbers. Including genes with 20, 18, 16, 13, 11, and 9 chromosomes. Chromosome synteny is shown in Figure 3.