CRISPR/Cas9 sgRNA-Mediated Mutagenesis in Switchgrass (Panicum virgatum L.)

Yang Liu
January 17, 2017 @ PAG XXV

1. Introduction
2. Transient assay of CRISPR/Cas9 system
3. Efficiency of CRISPR/Cas9 system in generating stable target gene mutations in switchgrass
4. Conclusion

Introduction:

1. Introduction
2. Transient assay of CRISPR/Cas9 system
3. Efficiency of CRISPR/Cas9 system in causing stable target gene mutations in switchgrass
4. Conclusion

Rice CRISPR/Cas9 System

Cas9 expression vector
(Provided by Dr. Bing Yang)
Isolation switchgrass protoplast

We demonstrate transient expression of PEG-mediated DNA uptake in the isolated protoplasts by detecting the GFP (green fluorescent protein) gene driven by rice ubiquitin promoter. Transformation efficiency is around 25%.

Strategy to detect Cas9 and sgRNA activity in switchgrass

We co-transform pUC19:35sGFP, pENTER4: gRNA, pBY:OsCas9 vectors to switchgrass protoplasts. After 60 hours, we detected fluorescent signal with NIKON ECLIPSE E200 microscope.

1. Introduction

2. Transient assay of CRISPR/Cas9 system

3. Efficiency of CRISPR/Cas9 system in causing stable target gene mutations in switchgrass

4. Conclusion

Target Sequence Design

<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Target Sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphoglycerate Mutase (PGM)</td>
<td>TACGCGGCTGGTGGTGGTG</td>
</tr>
</tbody>
</table>

Phosphoglycerate mutase

3-phosphoglycerate (3-PGA) → 2-phosphoglycerate (2-PGA)

Agrobacteria-mediated switchgrass transformation:

All of the calli in one callus line come from the same genetic background.
Selection of Hygromycin-resistant callus

After 6-8 weeks, with 100 mg L⁻¹ hygromycin selection, actively growing calli were picked out.

Agrobacteria-mediated switchgrass transformation:

Regeneration:
Calli that were actively growing were placed on regeneration medium with 50 mg L⁻¹ hygromycin.

Detection of mutations:
If the Cas9 functions as expected, it will cut the DNA at the site 3 bases upstream of the PAM sequence within the target gene and likely generating deletions or insertions.

For gene PGM, the mutation frequency is around 11.1% (1 out of 9 independent events contain mutants).

PGM target sequence: GCACGGAGCTGGTGGTGCGG

<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Independent Events</th>
<th>Plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGM</td>
<td>9</td>
<td>25</td>
</tr>
</tbody>
</table>

WT1	CAGGAGCTGGTGGTGCGG
WT2	CATGGACAGACGGAGTGGAACGTCTCCAG
mutant1	ACAGGAGCTGGTGGTGCGG
mutant2	CATGGACAGACGGAGTGGAACGTCTCCAG
mutant3	ACAGGAGCTGGTGGTGCGG
mutant4	CATGGACAGACGGAGTGGAACGTCTCCAG
mutant5	ACAGGAGCTGGTGGTGCGG
mutant6	CATGGACAGACGGAGTGGAACGTCTCCAG
mutant7	ACAGGAGCTGGTGGTGCGG
mutant8	CATGGACAGACGGAGTGGAACGTCTCCAG

PGM 5-4-1 (Homozygous)

WT1	CAGGAGCTGGTGGTGCGG
WT2	CATGGACAGACGGAGTGGAACGTCTCCAG
mutant1	ACAGGAGCTGGTGGTGCGG
mutant2	CATGGACAGACGGAGTGGAACGTCTCCAG
mutant3	ACAGGAGCTGGTGGTGCGG
mutant4	CATGGACAGACGGAGTGGAACGTCTCCAG
mutant5	ACAGGAGCTGGTGGTGCGG
mutant6	CATGGACAGACGGAGTGGAACGTCTCCAG
mutant7	ACAGGAGCTGGTGGTGCGG
mutant8	CATGGACAGACGGAGTGGAACGTCTCCAG

PGM 5-4-2 (Heterozygous)
Teosinte and Maize

Teosinte branched 1 (tb1) is found to affect the differentiation in branch architecture from teosinte to maize (John Doebley 2001)

Detection of mutations:

DNAs from 21 independent events were digested by Ncol and Bbvcl enzyme respectively to enrich the mutant alleles.

TB1 second target region:

<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Target Sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teosinte Branched 1 (TB1)</td>
<td>GGTAAAGCGGTAAGTCCATG</td>
</tr>
</tbody>
</table>

TB1 second target region:

- 5'------GGTAAAGCGGTAAGTCCATG----------3'
- 3'------C CATTTCGCCATCGCC---------5'

PAM:

- **TB1A**
 - Primer
- **TB1B**
 - Primer

TB1 first target region:

- 5'------TACCGAGCTGGTAGCTGAGG----------3'
- 3'------A TGGCCTGACCATCGCCC---------5'

PAM:

Detection of mutations:

TB1A

1. From 21 independent events, 84 plants were digested by Ncol and Bbvcl enzyme to enrich the mutant alleles.

TB1B

Conclusion:

1. Rice CRISPR/Cas9 system can induce mutation in switchgrass. For gene PGM, the mutation frequency is around 11.1% (1 out of 9 independent events contain mutants).
2. For TB1, we could use one construct with two sgRNAs to mutant two different genes simultaneously.
3. Detection is critical.

Acknowledgement:

Dr. Shui-zhang Fei
Paul Memick
Dr. Chenguo Jia
Dr. Jingjie Hao

Dr. Bing Yang Lab
Dr. Chenghu Ji
Dr. Zhenghi Zhang
Honghao Bi
Si Nian Char

United States Department of Agriculture
National Institute of Food and Agriculture

IOWA STATE UNIVERSITY
Thanks and Questions